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Abstract 

Security experts partaking in offensive engagements need to be able to detect whether the 

system they are attacking is legitimate or a honeypot. Various methods need to be identified 

and evaluated to determine which of these is the most suitable. With the rise of popularity 

amongst Remote Desktop Systems, being able to properly research and detect attacks against 

RDP is more important now than ever before. There is little research into RDP honeypots, and 

those honeypots that do exists are lacking sophistication. Furthermore, no research exists into 

detecting RDP honeypots, thus proving that any that do exist are likely unhardened through 

thorough research. The aim of this paper is to evaluate and identify the most effective detection 

methods for purple team engagements against contemporary RDP honeypots.  

Due to a lack of research within this field, a methodology was adapted from related research. 

A literature review was performed and highlighted several different techniques that could be 

tested against both RDP honeypots and legitimate services to find the most effective method 

of fingerprinting RDP honeypots, that is the method that is the most accurate while being quick 

and quiet from a network level. Three main experiments were carried out, testing network 

fingerprinting, latency, and the behaviour of the systems, and the results were captured and 

presented. The main finding of the results were key differences between the network fingerprint 

of honeypots and legitimate systems, as well as some latency timing differences for TCP 

packets for some of the honeypots. The behavioural results were lacking but it was found the 

one of the honeypots exhibited noticeable honeypot behaviour by redeploying itself after a 

connection was ended. 

These results were then further analysed to determine which of these techniques would be most 

effective for a purple team to use in an offensive engagement. It was found that fingerprinting, 

particularly with Xprobe2’s default settings, returned with most accurate assessment of a 

systems underlying operating system, a key distinguisher between real and fake RDP services 

that are often expected to be running on Windows architecture. It was also the quickest and one 

of the quietest of the scans. Nmap was also found to be very effective, providing more in-depth 

details about systems but took longer to complete and generated much more noise, especially 

with the intense scans. Latency testing was found to be ineffective at identifying fake systems 

from real ones, and the behavioural analyse fell short due to the lack of a real-world enterprise 

environment encompassing it, however, behavioural analysis in a real-world scenario may still 

be effective. These results show a lack of care when developing RDP honeypots. Both 

Windows based honeypots, AHA and rdppot, were easily distinguishable from their legitimate 

counterparts. This research could be continued further by automating the techniques outlined 

in this paper into a tool to be used by offensive engagers, as well as continuing to research these 

methods in more depth and explore new ones like virtual machine and logging system 

detection.  

 

Keywords: Remote Desktop Protocol, RDP, honeypots, detection, fingerprinting, purple team, 

offensive engagement, network analysis, open source 
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1. Introduction 

1.1 Background and Context 

The Remote Desktop Protocol (RDP) is a fundamental aspect of remote administration of 

computer systems around the globe and allows IT professionals to access and administrate 

systems from anywhere with an internet connection. It is, therefore, of great interest to 

cybercriminals due to the level of access it can provide. Recently, there has been an increased 

interest in RDP software due to the COVID-19 pandemic forcing many to work from home. 

TrustRadius, a software review platform, saw an increase of 1,587% in average traffic to their 

remote desktop category pages, as seen in Figure 1, (Sullivan-Hasson, 2020). This trend is 

backed up by Cybersecurity and Infrastructure Security Agency who have reported a 127% 

increase in the number of exposed RDP services since the beginning of the pandemic, (CISA, 

2020). 

 
Figure 1: Weekly average traffic to the Remote Desktop category on Trust Radius, a software review service. 

However, RDP has seen a reasonable amount of security vulnerabilities, including the 

infamous remote code execution vulnerability, BlueKeep (CVE-2019-0708 (NVD, 2021)), that 

was used to spread malware across the globe, (Greenberg, 2019).  RDP is also a regular victim 

of password brute force attacks. A report by Sophos, in which 10 RDP honeypots were 

deployed, found that an internet-facing RDP service would receive an average of 600 brute 

force attempts per hour, compared to 2 per hour from a similar study conducted in 2012 (Boddy, 

et al., 2019).  

With the rise of RDP as a target for cybercriminals there is an inevitable rise in the need for 

research and monitoring. Honeypots fill this role well as they can be used both to learn about 

current attack trends and techniques, as well as alert an organisation of potential attacks. 

Honeypots are applications that mimic an application or network protocol, in this case an RDP 

service. They are most popularly seen mimicking basic protocols such as SSH, TELNET and 

HTTP. These honeypots are often highly interactive, allowing deep knowledge to be gathered 

about attackers by faithfully imitating real systems. By convincing an attacker that they are a 

real system, a honeypot can gather information in much more depth than a firewall or intrusion 

detection system. Honeypots can monitor what an attacker intends to do once inside a system, 

including files they try to access or next steps they try to take, allowing an analyst to distinguish 

between the likes of a fluke success or a targeted attack, (Rapid7, 2022). 

Being able to distinguish between a real system and a honeypot is essential, otherwise the 

honeypot is not fit for purpose. A honeypot serves no real value if it can be detected as one. 
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Knowing how to effectively fingerprint honeypots can improve both the honeypot itself and 

the work of those participating in ethical offensive engagements, for instance, purple teams. 

Purple teams are a combination of red and blue teams, as illustrated in Figure 2. They conduct 

penetration testing against a system or network and then, using the knowledge gained from said 

test, attempt to increase the security of the system, (Morrison & van den Breekel, 2020). 

 

 
Figure 2: An explanation of the key roles in Red, Purple, and Blue teaming. 

 

The advantage of combining the two teams is more efficient communication between a 

traditional red and blue team engagement, and a combination of efforts and knowledge from 

both sides, (Miessler, 2022). When playing the role of aggressor, these teams need to be able 

to distinguish between real systems and honeypots. Failure to do so is a waste of both time and 

money, therefore, it is important to explore effective techniques to detect and label honeypots, 

While some research has been carried out on honeypot fingerprinting, there has been no 

research into fingerprinting RDP honeypots specifically or evaluating the most effective 

methodology for fingerprinting honeypots in a long-term, offensive engagement. 

 

1.2 Aim, Research Questions, and Objectives 

This project aims to identify and evaluate the most effective detection methods for purple team 

engagements against contemporary RDP honeypots. This aim can be broken down into three 

different research questions: 

 

1. What are the existing honeypot detection methods, and how do they compare? 

 

2. Which detection technique is most effective in a purple team engagement? 

 

3. How can these detection methods, honeypots, and the broader network be refined to 

improve effectiveness? 

 

 

The aim and research questions will be answered by carrying out the following objectives: 

 

1. A literature review will be carried out that will critically examine prior research into 

honeypots, remote desktop protocol, existing honeypot detection techniques, and 

honeypot detection countermeasures. 
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2. Using the knowledge gained from the literature review, a methodology will be designed 

to test various techniques against existing RDP honeypots alongside legitimate RDP 

clients as a means of finding notable differences.  

 

  

3. This methodology will then be executed, and the results recorded. 

 

4. Finally, the results will be analysed and discussed based on the effectiveness to 

distinguish real and fake RDP systems on the fly. Countermeasures to these techniques 

will also be discussed, which will highlight improvements that could be made by 

honeypot developers. 

 

1.3 Scope 

The majority of research into honeypots and fingerprinting revolves around the most popular 

honeypots for the most popular protocols, notable SSH, TELNET and HTTP. There is little to 

no published research into RDP honeypot detection. This, combined with the increased 

relevancy of RDP, means that this paper will focus entirely on RDP and the few dedicated RDP 

honeypots that exists. This will produce results that are unique to the challenges and 

characteristics posed by RDP. The latest versions of these honeypots will be used along with 

the latest RDP clients available. 

 

1.4 Structure 

Following the introduction section that outlines the background, research questions, objective, 

and scope of this project, the rest of the paper will be structured as follows: 

 

• Literature Review 

o This section will present and critically analyse proceeding research into 

honeypot detection and fingerprinting methods, as well as honeypots and RDP 

in general, to set a base level understanding of these two concepts. 

 

• Methodology 

o This section will discuss the research that forms the groundwork for the 

methodology. A design for the methodology, along with an explanation of how 

the said design was implemented will also be outlined. This design will then be 

executed under the ‘Experimentation’ subheading, with each experiment being 

separated. Finally, the methodology will be evaluated, and a conclusion will 

present the key highlights. 

 

• Results 

o This section will present the findings produced by experimentation and the 

analysis done on them, as well as highlighting the most notable results. 

 

• Discussion 

o This section will discuss and evaluate the entire project, focusing mainly on the 

methodology and conclusion, and comparing it to other academic research. It 

will also touch on how the findings can be applied to both the offensive and 
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defensive sides of purple teaming. This section will also discuss how this 

particular research could be furthered.  

 

 

• Conclusion 

o This final section will summarise the entire project, including any key findings 

and evaluating the strengths and weaknesses of the project.   
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2. Literature Review 

2.1 Introduction 

This section will critically examine the current research and literature that has been published 

around the relevant areas of this report. It has been separated into four main sections: 

 

1. An overview of honeypots and their most recent developments 

 

2. Remote Desktop Protocol 

 

3. Existing Honeypot Detection Techniques 

 

4. Honeypot Detection Countermeasures 

 

There is an abundance of literature published around all four of these topics, but the most focus 

will be given to existing techniques that have been researched. There are many different 

techniques that have been discussed but no research has focused on techniques specifically 

against the Remote Desktop Protocol, therefore, all the research examined will be focused on 

more popular honeypot protocols like SSH and HTTP. However, the section will conclude by 

extracting all the detection techniques that could theoretically be used to effectively fingerprint 

RDP honeypots. 

 

2.2 Overview of Honeypots and Recent Developments 

Honeypots are devices placed onto networks to lure cybercriminals into attacking them. The 

actions of the attacker can then be monitored and researched. According to a 2021 survey, 

honeypots are mostly classified under two labels: production and research. Production 

honeypots are most commonly used to detect attackers inside an environment, while research 

honeypots are often used to examine new exploits or the actions of attackers once they are 

inside a network, (Zhang & Thing, 2021). They exist for many different technologies but are 

most seen impersonating SSH, HTTP and TELNET protocols, all with varying levels of 

interaction. They can be classed into three different levels as shown in Table 1, (Livshitz, 

2019).  
Table 1: A summary of the three main types of honeypots. 

Interaction Level Characteristics 

Low The most basic form, usually only emulating the service 

fingerprint and a login ability. They are the easiest to deploy 

and configure but offer the least amount of information. 

Medium Responds to specific set criteria but do not fully emulate the 

service, e.g., a vulnerable file path on a web server being 

served to bait a particular exploit, (Spitzner, 2002).  

High Emulates the service and an entire system to back it. This could 

include a filesystem, desktop environment or an entire network 

of honeypots. They are the most time and resource consuming 

to deploy but offer the most amount of data. 

 

Research shows that honeypots are most commonly low interaction, due to the ease of 

development, deployment, and maintenance (Nawrocki, et al., 2016). However, due to the 
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advanced capabilities of RDP, medium- and high-interaction honeypots are significantly more 

helpful due to the extensive behavioural data they can provide. Since medium- and high-

interaction honeypots are the only appropriate type for RDP, few honeypot solutions exist.   

Honeypots have been used defensively to disrupt the cyber kill chain, as shown in Figure 3, 

(Lockheed Martin, 2022), according to Zhang et al. in their 2021 survey, (Zhang & Thing, 

2021). Firstly, honeypots can disrupt the reconnaissance phase by confusing any scanning 

activity. This use for honeypots can be seen in research by Tom Liston who developed sticky 

honeypots that take over unused IPs in a network to attract worms and attackers, (Liston, 2001). 

This research was bettered by Leslie Shing in 2016 who improved the connection parameters 

in an attempt to make the traffic seem more realistic. Referring to them as tarpits throughout 

her research, she demonstrated a better sticky IP honeypot than Liston’s which, while less 

‘sticky’, increased the honeypots capabilities and modularity, (Shing, 2016). 
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Figure 3: The Lockheed Martin Cyber Kill Chain, (Lockheed Martin, 2022). 

Honeypots can also disrupt the attack phase of the kill chain, including exploitation, 

installation, command and control, and actions on objectives. By tricking an attacker into 

accessing a high interaction honeypot, all of these steps could be monitored and contained, 

allowing tactic, technique and procedure information to be obtained. 

 

2.3 Remote Desktop Protocol (RDP) 

The Remote Desktop Protocol is a network protocol developed by Microsoft to allow users to 

connect to their Windows systems over a network using a graphical interface. By default, an 

RDP server runs on port 3389, (Liang, et al., 2021). RDP offers the whole desktop experience, 
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which makes it a valuable technology for system administrators and remote workers. It is also 

very popular, as can be seen via internet wide scanning services like Shodan. As of March 

2022, there are over 3.5 million different RDP services that are running facing the internet, 

with a considerable number of these running on systems that have reached their end of support, 

like Windows Server 2008 and Windows 7, as can be seen in Figure 4, (Shodan, 2022). 

 

 
Figure 4: A graph of different operating systems (OS) running RDP facing the internet. 

Open RDP services are also constantly scanned for by attackers. Examining internet wide 

scanning using GreyNoise showed almost 7,000 malicious RDP scans occurring as of the end 

of March 2022, as can be seen in Figure 5, (GreyNoise, 2022). 

 

 
Figure 5: The divide of malicious and benign RDP traffic shown by GreyNoise. 

Due to its widespread use and the power it can wield, RDP has been a popular target for hackers 

over the years. If a vulnerability in RDP can be discovered, it can give an attacker a massive 

reach into a network. The most infamous vulnerability in recent years was BlueKeep, (NVD, 

2021). First disclosed in 2019, the vulnerability allowed attackers to perform remote code 

execution against a vulnerable system, including Windows 7 and Windows Server 2008, two 

popular offerings at the time. According to a report from the CISA, the attack involved sending 

a specially crafted packet and allowed an attacker to add new accounts with full rights, modify 
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and view data, or install programs. The attack required no interaction from the victim and was 

even considered wormable, allow a sophisticated attack to take over entire networks using it, 

(CISA, 2019).  

RDP is also commonly a victim of brute force attacks, as outlined in a report by Sophos, 

(Boddy, et al., 2019). The researchers set up RDP honeypots on Amazon EC2 instances across 

10 different geographic locations with accounts that could never be brute forced, allowing them 

to examine all the different username and password combinations attempted by attackers. They 

left the machines up for a period of 30 days before examining their results. Over this time, the 

ten different honeypots logged a total of 4,298,513 failed login attempts, which came out to 

600 attempts per hour per honeypot. As a comparison, similar research undertaken in 2012 

showed just 2 login attempts per hour. The login attempts got progressively higher as the time 

went on, as show in Figure 6. 

 
Figure 6: A bar graph showing the login attempts per day over the 30-day period. 

This research demonstrated how common brute force attacks were against RDP systems, 

highlighting the importance of understanding these types of attacks and the need for systems 

like honeypots in both the detection and research of these things. However, it would be 

beneficial to repeat this research because, while not old, the rise in work from home over the 

past few years may create an interesting comparison in results between now and then. 

 

There is little research around RDP honeypots that is relevant to this project. One paper that is 

relevant is a short report detailing how effectively RDP and VNC honeypots could be used as 

an intrusion detection system, and how much information can be gained about an attacker by 

using them, (Danchenko, et al., 2017). This aim of this study was to determine if RDP/VNC 

honeypots could be used as an IDS in place of a traditionally IDS or firewall solution. The idea 
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is that honeypots are significantly cheaper to deploy and maintain than these other solutions, 

therefore, if they can effectively be used to detect threats they could be used as an alternative. 

In this short paper, no experiments were carried out. Ideas were discussed by the authors and a 

simple explanation was proposed: a honeypot would be placed on the network and would be 

the first point of contact for external users. The honeypot would determine if the user was 

authorised to access the server and if they were, would allow the user to connect. If the 

honeypot determined the user was not authorised, the user would be connected to a honeypot 

where their intentions could be further examined. The authors concluded that this type of IDS 

would help organisations better gather data on their advisories, when compared to traditional 

security solutions. This data could be used to further develop the organisations existing security 

architecture. This research proposes an interesting idea that has since been developed into a 

real-world solution by third parties, however, it fails to dig into the feasibility of this proposal 

on its own. In its entirety, the research is simply a novel, but potentially effective, new way to 

detect, monitor, and learn from bad actors, without demonstrating whether or not it is really 

possible. Being written in 2017, it would have been feasible to demonstrate this type of 

technology as it is not overly complex. 

RDPs level of interaction and complexity poses a challenge for creating high-interaction 

honeypots to replicate the service. The typical approach to this issue is using virtual machines 

that run legitimate copies of Windows software with RDP enabled. These machines are then 

rebooted once attacked, or a different machine from a pool of machines is given out to different 

attackers. 

 

2.4 Existing Honeypot Detection Techniques 

2.4.1 Overview of current research 

There has been little research done into honeypot detection methods and no research into RDP 

honeypots particularly. This is most likely due to how much detection techniques can vary in 

the service they mimic and their level of interaction, making it hard to compile general 

methods. However, information can be gathered from some related research.  

 

Fingerprinting comes in many different forms, but the main ones that will be focused on in this 

section are network, application, and system. Network fingerprinting is the most common 

technique and can be a reliable way of non-intrusively fingerprinting a system. Application 

fingerprinting can often be more intrusive than network fingerprinting but yield more verbose 

results. Finally, system fingerprinting is usually the most complex and intrusive, but when done 

correctly can provide the most accurate assessment of the nature of a system like a honeypot. 

A fingerprinting framework will also be discussed as a mean of methodising different finger 

printing techniques. 

Behaviour is another interesting detection vector. Honeypots behave differently from normal 

systems but try to hide any of these anomalies. Three different types of behaviour differences 

have been identified and will be discussed in detail as to how they may be used as a detection 

method. 

Since many honeypots are run virtually, being able to identify a system as being virtualised 

when it is expected to be run on bare metal, for instance a standard enterprise user desktop, can 

be an accurate way of detecting honeypots. This section will mainly focus on the research 

surrounding virtual machine detection. 

Measuring network latency has been a popular honeypot detection method due to its reliability 

over the years. This section will review the literature surrounding this technique and how it can 

be performed with the hopes of replicating it later in this report. 
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Finally, default configurations have been a reliable way of detecting honeypots since they first 

became popular. Most honeypots have a static, default configuration that can be turned into a 

fingerprint and used to scan for similar systems across networks, even being deployed in 

internet wide scanning. 

 

2.4.1 Fingerprinting 

The term ‘fingerprinting’ covers many different techniques which can prove useful when 

identifying systems or carrying out reconnaissance. A survey published in 2017 by Joni Uitto 

et al. outlined several anti-honeypot methods including three different fingerprinting 

categories: network, application, and system, (Uitto, et al., 2017). 

 

2.4.1.1 Network 

Mostly applicable for low and medium interaction honeypots, network fingerprinting can 

provide a consistent way of categorising honeypots. Uitto points to research conducted by Fu 

et al. which is further discussed in section 2.4.4 as it focuses solely on latency , (Fu, et al., 

2006).  

Network fingerprinting can also be done using network scanning tools like Nmap. Researchers 

from the Swiss German University used the tool against four different honeypots (HoneyD, 

Dionaea, Kippo, and Glastopf) to identify characteristics that could be used to identify the 

services as honeypots, (Dahbul, et al., 2017). They set up the honeypots alongside the 

legitimate services they mimicked, and used network scanning tools to grab banners, scan 

ports, and examine protocols. The researchers found issues with how each honeypot had 

implemented the services it was trying to mimic, as can be seen in Figure 7. If an attacker 

identified these issues on the system, it would serve as a red flag towards the nature of the 

device.  

 
Figure 7: The vulnerabilities found in each honeypot, along with remediations that could be made. 

This research highlighted some accurate ways of detecting honeypots, specifically how weak 

Dionaea was to detection via network fingerprinting. However, some of the techniques provide 

less concrete results around simply suspicious characteristics, which on their own, would not 

be enough to confidently identify a honeypot.  

Research by Hamid Mohammadzadeh and others from Victoria University of Wellington used 

Nmap to perform active network scanning against a dynamic honeypot system they proposed 

in their research, (Mohammadzadeh, et al., 2013). While not the focus of their research, they 

outline the types of Nmap scans they performed to test their honeypot system, ranging from 

quick scans to full comprehensive scans. The scans that were used in their tests can be seen in 

the below figure. 
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Figure 8: A table of NMAP scans used to scan honeypots, (Mohammadzadeh, et al., 2013). 

There scans can be borrowed for later use in the methodology of this research. This paper by 

Mohammadzadeh et al. while thorough, only uses Nmap and neglects the use of other popular 

network scanning tools like Xprobe2 or SinFP3 that were used in similar research done into 

fuzzing by Naik et al., (Naik, et al., 2021). Using more tools would have improved the quality 

of this papers results. 

Network fingerprinting has also been performed more manually by sending TCP packets and 

examining different characteristics of the network traffic. Research from New Mexico Tech 

published in 2007 concluded that while a valuable technique, the characteristics of a benign 

system could change vastly based on legitimate differences like operating system or network 

topology, making the technique only really viable when used alongside a reliable benchmark, 

(Mukkamala, et al., 2007). While the nature of this research is interesting, that manual and 

complex nature makes this technique unviable in a purple team engagement. 

More novel detection techniques have also been proposed. Alexander Vetteral presented a 

fingerprinting technique that involved analysing the implementation of network architecture 

within off-the-shelf honeypots, (Vetterl & Clayton, 2018). This technique involved examining 

how honeypots implemented network protocols and comparing them to the services they 

mimic. Although the differences were slight, they were enough to allow distinctions to be made 

between the honeypots and authentic services. The technique involved generating many 

packets and a moderate amount of low-level research. For these reasons, it is not an excellent 

“on-the-fly” method, however, with enough time and the right conditions, it could be 

implemented into a bespoke tool to be used in offensive engagements.  

 

 

2.4.1.2 Application 

Uitto also suggests examining the applications and services that a device offers to determine if 

they are in line with the expected behaviour. If a server is offering service A and B but would 

be expected to also offer C and D, this could be deemed as suspicious and tip off an attacker 

causing them to doubt the validity of the system. In the case of RDP, it would be odd to find a 

server with only port 3389 open and nothing else since RDP is most often used to administrate 
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servers that offer other services like SMB or HTTP. While this could be an indication of 

suspicious activity, it is not enough to determine the nature of a system. This could be used 

alongside another fingerprinting technique to build up a case against the system, however, on 

its own would unlikely ever be reliable, especially in a real-world engagement where systems 

are often configured imperfectly.  

 

2.4.1.3 System 

Finally, system fingerprinting is focused on high interaction honeypots. To avoid rewriting 

entire systems, most high interaction honeypots are the real system, usually deployed virtually. 

Since these honeypots use the original system, they are identical in that way, however, still 

require monitoring or logging software to be installed directly onto them or hooked in. Both 

methods leave traces that an experienced attacker may be able to find. Research has been done 

more deeply into this technique, specifically at how a data capture tool, Sebek, could be 

detected on a honeynet, (Holz & Raynal, 2005). The authors outlined how Sebek could be 

detected on both Linux, Windows, and OpenBSD. Detecting it on Linux was as simple as 

running a tool known as ‘module_hunter.c’ which looked for patterns in the kernel’s address 

space. Similarly, on Windows it could be detected by searching the ‘PSLoadedModuleList’ 

and looking for the hidden module using the ‘KProcCheck’ tool, as shown in the figure below. 

 
Figure 9: The command used to run KProcCheck and detect Sebek on Windows, (Holz & Raynal, 2005). 

Their research shows it can be trivial for an attacker of a certain level to detect a honeypot 

based on the monitoring tools that have been injected into the system, however, with the 

research being published in 2005, it is unclear how relevant a practice this is today. It also relies 

on the attacker already having access to the system. While this task could be expected to be 

trivial given the nature of honeypots, an attacker may have already had to waste time scanning 

and accessing the system before they can determine its nature, not only wasting precious time 

but also giving away their presence on a network.  

 

2.4.1.4 Fingerprinting Framework 

A paper by Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis laid out 

an in-depth framework for fingerprinting any type of honeypot, (Srinivasa, et al., 2021). This 

paper presented a framework for fingerprinting honeypots by compiling research that has been 

taken place in the field over the last few years. This was a first-of-its-kind framework that could 

be used as a basis for any further honeypot research against any type of honeypots. The 

framework was composed in two parts, a probed-based fingerprinting method paired alongside 

a metascan-based method. The first consisted of a port scan, banner check, HTTP statis 

response analysis, SSL/TLS certificate check, protocol handshake analysis, library dependency 

check and static command response. The second consisted of a Cenesys or Shodan analysis, a 

keyword search, ISP/AS check and a cloud hosting check. Both methods finished with a FQDN 

check. All this data was used to determine if a device was a honeypot. The framework was 

designed with the 9 most popular honeypots, in their default configuration, as the target. The 

framework was illustrated by the authors, as can be seen in Figure 10. 
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Figure 10: The proposed framework laid out visually, including both branches. 

Data was collected by scanning the entire internet using ZMap, (Adrian, et al., 2014), totalling 

over 2.9 billion devices. This data was fed through the framework created by the authors to 

determine if the device was a honeypot. This was repeated three times. The authors identified 

21,855 devices as honeypots. 14,246 of these were identified by the probed-based scanning 

and the other 7,410 were identified by the meta-based scanning. Not all these honeypots were 

running their default configuration. Due to the nature of honeypots, it is difficult to know how 

accurate the results of the study are but due to the extensive nature of the framework, the likely 

hood of false positives is low. The figure that cannot be provided is how many honeypots were 

missed by this framework. This research was quite extensive, looking at multiple honeypots 

and proposing a thorough framework which successfully identified a large number of 

honeypots, not all of which were running their default configuration. The test was also repeated 

three times, with consistent results. The research could be taken further by developing the 

framework into an automated tool or developing the framework further to target more 

honeypots. This framework cannot be fully used in a research environment due to the lack of 

internet deployment, however, what can be used from it will form a basis for a methodology 

later in this research.  

 

2.4.2 Behaviour 

From an attacker’s perspective, using a honeypot system can seem different to using a real 

system based on how accurately the system replicates its counterpart. Due to this, the way a 

honeypot behaves can give away its nature. A paper by Srinivas Mukkamala outlined some key 

characteristics that honeypots possess that are not seen in regular systems, (Mukkamala, et al., 

2007). These included: 

 

1. A lack of network activity on the honeypot 

2. All interactions being logged 

3. Restricted bandwidth to prevent further attacks from said honeypot 

The author concluded the first attribute is impossible to use reliable due to the need for long 

term monitoring and the high possibility of false positives. The other two characteristics, 

however, are exclusive to honeypot systems and would not be found in production 

environments.  

The following subsections will focus on three different characteristics found within honeypots 

and not real systems that may be used to identify them as such. 
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2.4.2.1 Automatic Redeployment 

Automatic redeployment is a technique used by honeypots to reconfigure their system to a 

default state after being attacked, allowing for another attacker to be trapped by it. This 

technique was discussed in a paper published in 2018 which outlined a number of different 

techniques, (Tsikerdekis, et al., 2018). Automatic Redeployment can be an obvious tell. For 

example, if an attacker connects to a honeypot, creates a file, and then disconnects, they expect 

to find the file on the system if they ever reconnect. If the honeypot rebuilds itself immediately 

after the attacker disconnects, the attacker could use the removal of their file as proof the 

machine has been tampered with by reconnecting within a short time frame. 

 

2.4.2.2 Dynamic Intelligence 

Another honeypot characteristics noted by Tsikerdekis was Dynamic intelligence. Dynamic 

intelligence is a method honeypots use to attempt to be more helpful. It involves using AI to 

adapt to the user and lure them in by doing things such as changing file names to different 

languages to determine ethnic background. While this technique is intended to make honeypots 

harder to detect, an attacker with a keen eye could notice the change in file names. RDP would 

be a sensible service to implement dynamic intelligence due to its high level of interaction, 

therefore, this detection technique is also likely applicable to either existing or future RDP 

honeypots. 

 

2.4.2.3 Furthering an attack (Operation Analysis) 

Honeypots are designed to be attacked, therefore, it is expected that a malicious actor will have 

access to the system in some form at one point in time. For this reason, steps must be tacken to 

ensure the honeypot is not used to launch further attacks. Honeypots should never provide 

lateral movement into non-honey parts of a network, and they should never become part of 

botnet. This characteristic proves a downfall in honeypots hiding their nature. Uitto et al. raised 

‘operational analysis’ as a method of detecting a honeypot in their survey, (Uitto, et al., 2017). 

Uitto proposes an attacker could simply attempt to add the suspected honeypot to a botnet. If 

it is unsuccessful for no clear reason, it is likely to be a honeypot.  

 

2.4.3 Virtualisation 

It is common for honeypots to be run as virtual machines to isolate them from production 

systems but more importantly allow for simple deployment and redeployment after an attack. 

However, the popularity of virtualisation can also be the downfall of a honeypot because if a 

system can be detected as virtual it can often be a giveaway to its true nature. A paper by 

Michail Tsikerdekis examined various improvements that could be made, both practical and 

theoretical, to honeypots behaviour to decrease their chance of being detected, (Tsikerdekis, et 

al., 2018). The third technique, hardware, would examine if the service is running on bare metal 

or a virtual machine (VM). This information is helpful; however, it cannot be used on its own 

to determine if a machine is a honeypot or not. While it is common for honeypots to be run 

inside VMs, due to the flexibility and ease they offer, it is also common for legitimate 

infrastructure to be run in VMs for the same reason.  

A paper by Thorsten Holz and Frederic Raynal published in 2005 also touches on virtualisation 

as a means of detecting honeypots, specifically looking at VMWare, (Holz & Raynal, 2005). 

VMWare is software that allows for virtual machines to be deployed and managed and is a 

common way to deploy honeypots even to this day. Holz outlined a few different red flags 

including the MAC address of the network interface and a backdoor within the I/O 
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functionality, however, these two identifiers are no longer relevant to modern builds of 

VMWare. 

 

2.4.3.1 User-Mode Linux 

Another technique examined and Holz and Raynal was User-mode Linux (UML). While not 

strictly virtualisation, it possesses many of the same shortcomings of virtualised honeypots and 

has therefore been grouped accordingly. UML is a version of the Linux kernel that runs in user 

space and talks to the original kernel, referred to as the host kernel, like a proxy, (User Mode 

Linux Core Team, 2020). While its intention was as a debugging tool for programming Linux 

kernels without crashing the entire system, it has seen some limited use as a honeypot. Holz 

outlines a few techniques of detecting this, mainly revolving around examining processes and 

‘dmesg’ logs, as well as the ‘/proc/cpuinfo’ file that will outright identify the system as UML. 

Using UML as a honeypot type system is essentially a forgotten technique due to the 

popularisation and easy-of-use that virtual machine software has provided. Therefore, this 

research is not applicable to most modern research. 

 

2.4.3.2 Detecting Virtualisation 

Virtualisation has become a popular method of deploying infrastructure, therefore, being able 

to tell a system is virtualised is not an immediate red flag that the system is a honeypot. 

However, it can be a giveaway if the system it not normalised virtualised, like a desktop 

environment. While Desktop as a Service has grown in popularity in recent years, it still is not 

the norm, (Gartner, 2020). Therefore, being able to detect if a system is being run virtually can 

be a helpful sign of its nature. Research by Anoirel Issa outlined methods of detecting a wide 

range of virtual machines, including VMWare and virtual machines running certain Windows 

operating systems like XP, (Issa, 2012). Unfortunately, the author did not address 

QEMU/KVM devices, which are used by two of the honeypots examined in this research. 

However, their findings are still of interest. The authors illustrates that the stack address on a 

Windows XP virtual machine can be predicted to prove a machine is virtualised. The other 

shows that the ECX and ESP is usually around 0x120000 on a virtualised XP environment, and 

around 0x18000 for Windows 7. The author also demonstrated how DLLs could be used as a 

red flag as well. In a debugging menu, instead of the system pointing towards ‘ntdll.dll’ when 

called, it instead points towards ‘debug’ on a Windows XP virtual machine run on Virtual Box, 

as can be seen in Figure 11. 

 
Figure 11: The difference in the stack between a non-emulated and emulated Windows XP, (Issa, 2012). 

Issa also outlined techniques for detecting specific virtual machines, however, none of these 

virtual machines are used within the methodology of this research, therefore, this information 

is not within scope.  
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2.4.4 Latency 

As mentioned in section 2.4.3, it is common for honeypots to be run as virtual machines, 

allowing them to be easily backed up and deployed and redeployed after an attack. Honeypots 

often also have built in logging mechanisms to record information about their attacker. Both 

additional factors add extra latency to network traffic to and from the honeypots when 

compared to the systems they are trying to impersonate. This issue was highlighter early on by 

Holz and Raynal, being one of the techniques they wrote on that is still relevant to today (Holz 

& Raynal, 2005). When honeypots log information or are hosted within virtual machines, extra 

processing time is required when compared to an ordinary system. While unlikely to be noticed 

by an individual, networking tools can be used to time round trip times and response times 

from systems, however, while promising on paper, specific circumstances are required. A 

baseline first must be taken against a similar system on the same network that is confirmed to 

be legitimate, preferably the same distance away. This can then be used to compare to other 

systems. A paper by Tsikerdekis in 2018 also reports on latency within honeypots, both with 

the network and the functionality of the system. Honeypots often take slightly longer to finalise 

a connection due to extra information being logged by the server that the service would not 

ordinarily log. This method is general enough that it could be applied to honeypots of any type, 

including RDP. 

 

Research conducted in 2006 delved further into this idea, (Fu, et al., 2006). This paper looked 

at how attackers can detect honeypots using discrepancies in network latency, and the 

countermeasures that can be put in place to camouflage honeypots, in this case Honeyd. 

Honeypots, and more particularly honeynets, often need to emulate the time it takes for certain 

network events to occur. Depending on the under lying architecture of the system, this is limited 

by the operating systems timer interrupts, which are also dependent on the timing hardware on 

the system. This get even more convoluted when using virtual machines which emulate said 

hardware, relying on the hardware they are being deployed on. To experiment on this, the 

researchers deployed a virtual network consisting of three machines connected to a router. This 

router was connected to a second router, and that router to a third, as can be seen in Figure 12. 

 
Figure 12: The virtual network used to test round trip times against the honeynet. 
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The research’s used round-trip time (RTT) as a measurement to look for anomalies. To get the 

RTT they sent one packet to R2 and another to R3. They then used the following formulate to 

obtain the two-way link latency: 
two-way link latency= 2× LLR2,R3 

= RTTpkt2 −RTTpkt1 

They measured using three different techniques: 

 

1. Ping Based: This was the most straight forward, using ICMP echo request messages 

and receiving an ICMP echo reply. 

 

2. TCP Based: This was done in two ways. The first, if the victim had a well-known TCP 

service, like Telnet, running, the attacker could exploit said service to get an RTT by 

starting a three-way handshake and using the ACK/SYN response after sending an 

initial SYN packet. The second method relied on using TCP reset (RST) packets by 

sending malformed TCP requests and receiving RST packets in response. 

 

 

3. UDP Based: Similar to TCP with both known services and malformed requests. By 

sending a UDP request with an unused destination port, the system would reply with an 

ICMP packet. 

 

Once the data has been gathered, the researchers outlined how a decision could be made around 

the systems nature. This first involved a phase of offline training in which RTT data was 

collected about known real and virtual networks, keeping the data in two categories of real and 

virtual. This data could then be used within the Neyman-Peason decision theory. The 

researchers took the detection rate (PD) and the false-alarm rate (PF) and constructed a 

classifier where f0(x) was the link latency of a real network, and f1(x) was the link latency of 

an emulated link by Honeyd. This has been visualised in Figure 13. 

 
Figure 13: A visualisation of the classifier used by the research to determine if a link was real or virtual. 

If the value (x) fell before Y then the link was categorised as real, if it was after, it was virtual. 

By conducting their tests using the model they had created, the researchers found it to be a 

reliable way to detect honeypots, due to the face that Honeyd could only have its emulated 

latency tuned to 1ms or 20ms and could not accurately disguise itself as a real network. To fix 

this, the Linux kernel the honeypots were deployed on had to be tuned to increase timing 

accuracy to better disguise the fake system. 
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While this research was published in 2006, it remains relevant in 2022. It is still possible to 

determine RTT in modern systems and can be a quiet operation to perform.  

 

 

2.4.5 Default Configurations 

When a honeypot is deployed, it is often deployed in its default configuration, unless the 

deployer goes out of their way to make changes before deployment. To further investigate this, 

research was undertaken by Shun Morishita, Takuya Hoizumi, Wataru Ueno, and others, in 

2019, (Morishita, et al., 2019). This research investigated different open-source honeypots 

running close to their default configuration and how challenging it was to detect them. It was 

undertaken to demonstrate how trivial it can be to evaluate a honeypot based off its 

configuration. The researchers used 14 different open-source honeypots, mainly focusing on 

SSH, TELNET, and HTTP. 20 different signatures were then crafted that could profile the 

honeypot based off behaviour or its configuration. The researchers then performed an internet 

wide scan and used their signatures to try and detect honeypots. The researchers found over 

19,000 honeypots using this technique, mainly in research networks, with a high concentration 

being found in Taiwan. One of this paper’s greatest strengths was the number of honeypots that 

were used. This gave the research a wider scope than many of its peers making the data it 

provides more useful. This project did a thorough job of showing how trivial it is to detect 

default configured honeypots and how effective this technique can be. While it is out with the 

scope of this paper to perform a similar experiment, this is a potential area of future work.  

 

2.5 Honeypot detection countermeasures 

Honeypot detection countermeasures are a popular area of research. They consist of different 

techniques or approaches to make honeypots more camouflaged and harder to distinguish from 

real systems. A popular approach in recent years has been making use of fuzzing techniques to 

make honeypots harder to detect.  

Research published in 2018 proposed a new fuzzy technique that could be used by honeypots 

to identify and prevent fingerprinting attackers being carried out against it, (Naik, et al., 2018). 

The research was undertaken to examine how honeypots could be improved to make them 

harder to fingerprint, in particularly against popular finger printing techniques which are very 

effective against low level honeypots like KFSensor which was used in the study. Finger 

printing attacks were executed against a KFSensor honeypot using NMAP to simulate the 

attack with 5 different fingerprinting scripts, shown in Figure 14, and this data was analysed to 

identify various finger printing indicators.  



 

 

 

 

29 

 
Figure 14: Different NMAP commands used to test the fuzzing technique. 

Once developed, the technique was implemented, and the same finger printing attacks were 

run. Each finger printing technique was run against the new fuzzing technique 10 times. The 

data from the scans was collected using Wireshark to examine the conversation between the 

honeypot and the simulated attacker. This data was then used to develop a fuzzy technique to 

detect when these finger printing attackers were being carried out. Data about the success of 

the finger printing technique was gathered by the researchers using the tool they had developed. 

The technique was successfully developed and used to detect finger printing attacks. A figure 

showing the main steps of the procedure can be seen below. 

 
Figure 15: The new honeypot detection counter measure developed by the researchers. 

Many of the attacks were detected as being highly likely to be an attack, with only one attack 

being as detected as low chance 30% of the time. The full results are visible in Figure 14. This 

paper thoroughly examined multiple common finger printing techniques and proposed a new 

fuzzy technique that was successful at detecting these attacks. A large sample size was used to 

evaluate their solution. The methodology was well thought through, using multiple types of 

common finger printing attacks and accounting for all of them. This line of research could be 

further researched by examining a similar technique for medium- and high-level honeypots. 

Three years later, Naik followed up this research with a similar paper which used more complex 

dynamic fuzzy rule interpolation (D-FRI) instead of standard fuzzing to detect active 

fingerprinting attempts carried out by an attacker intending to identify a honeypot, (Naik, et 
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al., 2021). This study was undertaken to improve honeypots detection avoidance systems in an 

effect to combat the common honeypot detection method of active fingerprinting. Since 

honeypots are only effective when they are convincing, it is important that every effect is taken 

to make these devices look as genuine as possible. Testing was done against the researcher’s 

honeypot using the same techniques used by attackers: fingerprinting and OS fingerprinting 

attacks using Nmap, Xprobe2, NetScanTools Pro, SinFP3 and Nessus. The data was collected 

by deploying the D-FRI honeypot and running fingerprinting attacks against it. Each finger 

printing tool was run 50 times against the honeypot. The research concluded the D-FRI 

honeypot was effective at detecting active finger printing attempts, both TCP/IP based and OS 

based. It was found that the prediction rate of an attack was almost 80% with D-FRI enabled. 

The use of multiple fingerprinting tools, and types of finger printing attacks, makes this 

research very rigorous in terms of testing, alongside the repetitive testing of each tool that 

showed consistent results. The proposed method could continue to develop into quite an 

effective anti-detection technique if it were fleshed out to work with more protocol or more 

niche scanning tools. Compared to his earlier research, this new technique proposed by Naik 

appeared by to 10% more effective at detection, even over a wider spread of tools, as can be 

seen in the below figure. 

 
Figure 16: The accuracy of the D-FRI tool against different scanning tools. 

2.6 Conclusion  

This section has aimed to critically analyse the existing research around honeypots, RDP, 

honeypot detection methods, and honeypot detection countermeasures. This section has 

highlighted the strengths and weaknesses of the research alongside the most applicable sections 

for this current research. This remainder of this section will highlight the parts of each area of 

research which will be used as part of the rest of this report. 

Examining RDP showed just how popular it is across the globe, which makes it such a popular 

attack vector. Critical vulnerabilities RDP has faced were also mentioned, namely BlueKeep, 
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which highlights how important RDP honeypots can be in terms of detection and research, thus 

why being able to effectively fingerprint them is an important research area. 

Comparing research around detection methods highlighted an array of different techniques all 

with their own strengths and weaknesses. Many techniques overlapped with one another but 

still had their own merit.  

The research showed how effective network fingerprinting could be against some honeypots, 

(Dahbul, et al., 2017), but was not always a sure-fire way of detection. This type of network 

scanning will be used later in this paper as a starting point, using multiple tools rather than only 

NMAP. Types of effective scans were also highlighted, (Mohammadzadeh, et al., 2013), but 

again, only for Nmap, so time will need to be spent transferring these types of scans into other 

tools. The technique proposed by Vetteral, while effective, would not be usable in a purple 

team engagement and will therefore not be implemented in this research, (Vetterl & Clayton, 

2018). Application fingerprinting proved to be an easy practice to perform but lacks in-depth 

research and can be rarely used on its own, (Uitto, et al., 2017). However, it will still be 

considered later in this report. Finally, system fingerprinting, while effective, requires a large 

amount of overhead and accessing the system in the first place which makes it significantly 

less stealthy. 

Behaviourally analysis proved to be an interesting research area, with key characteristic 

differences being highlighted including logging and bandwidth restrictions, (Mukkamala, et 

al., 2007), as well automatic redeployment and dynamic intelligence, (Tsikerdekis, et al., 

2018), and finally operational differences, (Uitto, et al., 2017). The nature of these techniques 

makes them much more complex to automate but will be attempted to be performed manually 

against the RDP honeypots. 

Anti-virtualisation techniques, while quite complex, proved to also be an interesting area of 

research. Due to the low-level nature of them and the complexity they pose they will not be 

further examined in this report. This is also due to the fact no research was found on detecting 

KVM/QEMU environments which will be used to run two out of three of the RDP honeypots.  

Latency was also a real researched around for detecting honeypots. The techniques highlighted 

by both Holz (Holz & Raynal, 2005) and Fu (Fu, et al., 2006) relied on first obtaining a 

benchmark of latency within the environment. This will be possible in this further research but 

will likely rank low in terms of effectiveness due to the high amount of overhead required. 

The final detection technique, default configurations, was one of the most effective in terms of 

detecting systems. It was used effectively to detect over 19,000 honeypots across the internet, 

(Morishita, et al., 2019). It cannot be used in this further research, however, the default 

configuration of the systems will be examined and noted and could be used in further research. 

Research around counter measures primary focused on the use of fuzzing to trick adversaries. 

Both pieces posed effective techniques for detecting incoming fingerprinting attacks, with the 

later research being slightly more effective, (Naik, et al., 2018) (Naik, et al., 2021).  
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3. Methodology 

3.1 Introduction 

This section of the report will outline the research, design, and implementation of the practical 

element of this research. This consists of both the experiments that will be carried out and the 

network that will be used to perform these tests. The design of the experiments has been based 

off the research outline in section two. This section will also outline how the experiments are 

run and evaluate the methodology before concluding this section. The results from the 

experiments will not be analysed until section 4. 

A risk assessment and ethics report were carried out before any testing was undertaken. These 

can be found in Appendix A - Risk Analysis and Appendix B - Ethics Reportrespectively.  

 

3.2 Research 

The first chapter of the project will contain a literature review that will critically analyse the 

small pool of existing research into honeypot detection methods. Since this current area of 

research is lacking, each honeypot will have its behaviour examined to find flaws or 

inconsistencies within its design. These would then be used to develop more detection 

techniques or could be used as markers to denote likelihood.  

The second chapter of this project was dedicated to a review of the existing literature around 

the topics of this paper, including detection methods. From this literature, a handful of detection 

methods have been chosen as part of the testing this paper will conduct. These techniques are: 

1. Fingerprinting 

a. NMAP 

b. Xprobe2 

2. Latency 

a. ICMP Packers 

b. TCP Packets 

3. Behaviour 

a. Object permanence 

b. Further Attacks 

 

Aside from these techniques, each honeypot was also be examined for logical and behavioural 

anomalies that could be used to denote the systems purpose.  

 

3.3 Design 

3.3.1 Honeypots 

For the purposes of testing fingerprinting techniques, three viable RDP honeypots were chosen; 

ad-honeypot-autodeploy (AHA), Octopus, and rdppot, (tothi, 2022) (qeeqbox, 2021) (Kryptos 

Login, 2019). Each honeypot is free and opensource software and have all been maintained 

within the last three years. These honeypots were chosen for several factors. Firstly, each works 

slightly differently and uses a different operating system as its basis. AHA is the most complex 

and deploys not only a Windows 10 PC, but also a domain controller and an Ubuntu machine 



 

 

 

 

33 

to monitor intrusions in three different QEMU/KVM virtual machines. Octopus simulates an 

XRDP Linux service and is the most basic and straightforward of the three. It does not make 

use of virtual machines and therefore simulates the service the closet to bare metal. Finally, 

rdppot deploys a given number of QEMU/KVM virtual machines in a pool running Windows 

XP. It swaps out and deploys the virtual machines as requested by incoming connections. These 

three systems are summarised in Table 2. 

 
Table 2: The three honeypot services used for testing. 

Honeypot Operating System Notable Features 

ad-honeypot-autodeploy Windows 10 Deploys an automatically populated 

domain controller 

octopus Ubuntu 20.04 Does not use a virtual machine to 

deploy the honeypot 

rdppot Windows XP Pro SP3 Runs a pool of virtual machines and 

swaps them on the fly to support 

multiple connections 

 

3.3.2 Legitimate Services 

To use as a benchmark, three legitimate RDP services will also be deployed, one to match each 

honeypots underlying architecture. The first was a Windows 10 system, running the same 

version of Windows 10 as AHA, (Kandakatla, 2022). The only modification made to the system 

was to enable RDP connections. An Ubuntu 20.04 system was the second legitimate system, 

running XRDP as the RDP service, (Ubuntu, 2022) (Sorg, 2022). Finally, a Windows XP Pro 

SP3 system will also be used running the same copy of the OS as rdppot. Each system can be 

used as a direct comparison to its corresponding honeypot to allow more accurate finding to be 

drawn about each individual honeypot, as shown in the below table.  

 
Table 3: The legitimate and honeypot RDP server that will be used for research. 

Legitimate Service Honeypot 

Windows 10 RDP ad-honeypot-autodeploy 

XRDP octopus 

Windows XP RDP rdppot 

 

 

3.3.3 Virtual Machines 

Deploying each honeypot and legitimate service on its own dedicated hardware in a real 

network would yield the most accurate and interesting results, however, those type of resources 

are out of the scope of this project. Therefore, virtual machines will be used to host each system, 

as well as two other systems that will be used as part of testing. All the virtual machines will 

be run from a Windows 10 host using VMWare Workstation 16 Pro version 16.1.2, (VMWare, 

2022). Each system will have its own virtual machine connected in a private virtual network 

with enough resources to run the system comfortable. Exact specifications have been outlined 

in section 3.4. 

The other two virtual machines will be used to simulate an attacker and host a virtual machine 

used within the further attacker testing. The simulated attacker system will run the latest version 

of Kali Linux as of writing, version 2022.1, installed on a virtual machine with sufficient virtual 

hardware assigned, (Kali, 2022). Kali Linux was chosen since it is a popular operating system 
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used to test the security of systems. The ‘victim’ virtual machine will run Windows 10 and host 

an SSH server and an FTP server to be used as part of the behavioural testing. 

 

3.3.4 Network 

All eight virtual machines will be connected in a virtual network in host-only mode within the 

192.168.10.0/24 subnet, using DHCP to assign IP addresses to each machine. A diagram 

depicting the network has been shown in Figure 17, but it should be noted that all machines 

could communicate with each other in the network. Each machine in the figure has been 

labelled with its purpose, followed by its operating system and local IP address.  

 

 
Figure 17: Virtual Network design that will be used during research 

 

 

3.4 Implementation 



 

 

 

 

35 

This section will outline the steps taken to setup each system prior to testing. It will not cover 

the installation of the operating systems as this is trivial, it will only cover the steps taken to 

deploy the RDP service or honeypot. All systems were run virtually using VMWare 

Workstation 16 Pro 16.1.2 running on Windows 10 Home version 19044. All systems were set 

up as instructed by software authors when possible, however, many extra steps had to be taken 

to set up some of the honeypots. Each honeypot and legitimate service has been setup as close 

to default as possible. 

 

3.4.1 Windows 10 RDP 

The following steps were taken to enable RDP. 

1. Select ‘Start’ (Windows icon), and then ‘Settings’ 

2. Select ‘System’, then ‘Remote Desktop’ and enable it. 

 

RDP can be seen working in Figure 18 using Remmina from the attacker’s machine. 

 
Figure 18: Windows 10 RDP connected to via the Attack machine. 

 

3.4.2 XRDP 

The following steps were taken to deploy XRDP on the Ubuntu system: 

1. Open a terminal window and run the following commands: 

sudo apt update && sudo apt install xrdp 

The service is now installed and should begin running automatically. XRDP can be seen 

working in Figure 19. 
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Figure 19: XRDP connected to via the Attack machine. 

 

3.4.3 Windows XP RDP 

The following steps were taken on the Windows XP system to enable RDP: 

1. Right click on ‘My Computer’ and click ‘Properties’ 

2. Select the ‘Remote’ tab and then ‘Allow users to connect remotely to this computer.” 

3. Press ‘OK’ and then ‘OK’. 

 

RDP can be seen working in the below figure. 
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Figure 20: Windows XP RDP connected to via the Attack machine. 

 

3.4.4 ad-honeypot-autodeploy 

This software required 12GB of memory, 8CPU cores and 100GB of storage which were 

provided via the virtual machine. The software was installed on Ubuntu 20.04.3 Desktop and 

virtualisation was enabled for the virtual machine prior to booting. To install the software, the 

following steps were taken. An important prerequisite was to download a copy of a Windows 

10 ISO file as the software could not do that automatically like the other ISO files it uses. 

 

Packer (HashiCorp, 2022) 

1. Other required software was first installed using the following command: 

sudo apt install git vim p7zip-full curl qemu-kvm libvirt-daemon-system libvirt-clients 

bridge-utils xsltproc pwgen whois python3.8-venv 

2. Then the software was installed from the GitHub repository using the following command: 

git clone https://github.com/tothi/ad-honeypot-autodeploy.git 

3. Change into the newly installed directory and run the ‘init-passwords.sh’ script. All 

passwords were set to ‘!Password123’ to meet password requirements. 

cd ad-honeypot-autodeploy && ./init-passwords.sh 

4. Move into the ‘packer’ directory and run the ‘get-virtio.sh’ script. 

cd packer && ./get-virtio.sh 

5. Copy of the previously downloaded Windows 10 ISO file into the ISO directory and 

rename it to ‘Win10_21H2_EnglishInternational_x64.iso’ 

https://github.com/tothi/ad-honeypot-autodeploy.git
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6. Download GeoList2-City.mmb and place it in the resource’s directory, (MaxMind, 2022). 

7. Run the below commands to install packer. 

o curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add - 

o sudo apt-add-repository "deb [arch=amd64] https://apt.releases.hashicorp.com 

$(lsb_release -cs) main" 

o sudo apt-get update && sudo apt-get install packer 

8. Run the ‘packer-build-all.sh’ script. 

./packer-build-all.sh 

 

Terraform (HashiCorp, 2022) 

1. Install terraform using this command: 

a. sudo apt install terraform 

2. Edit the qemu.conf file to fix an issue faced during this research by following these 

steps. 

a. sudo vim /etc/libvirt/qemu.conf 

b. Uncomment ‘security_driver = ‘none’’ 

3. Change into the terraform directory 

a. cd ../terraform 

4. Initiate and apply the terraform build. This may take sometime. 

a. terraform init 

b. terraform apply 

 

Ansible (RedHat, 2022) 

1. Change into the Ansible directory 

cd ../ansible 

2. Run the following commands: 

python3 -m venv venv 

. ./venv/bin/activate 

pip3 install -r requirements.txt 

pip wheel install ansible pywinrm faker 

3. Finally deploy the ansible configuration. This step may take a while. 

ansible-playbook -i hosts setup-domain.yml -v 

 

The honeypot is now ready to be used. To make it accessible to the attacker’s machine, the 

following commands were run: 
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sudo iptables -t nat -A PREROUTING -p tcp --dport 3389 -j DNAT --to-destination 

192.168.3.112:3389 

sudo iptables -A FORWARD -p tcp --dport 3389 -j ACCEPT 

sudo iptables -t nat -A POSTROUTING -j MASQUERADE 

 

The systems were now ready to be tested. An RDP connection to the system can be seen in 

Figure 21. 

 

 
Figure 21: AHA connected to via the Attack machine. 

 

3.4.5 rdppot 

This software required 4GB of memory, 2CPU cores and was given 40GB of hard disk space. 

It was installed on Ubuntu 20.04.3 within a virtual machine with virtualisation support enabled. 

This honeypot required a Windows XP ISO file to be obtained by the user to be used as part of 

the honeypot. A copy of Windows XP Pro SP3 was used for this setup. The following steps 

were taken to setup this device: 

1. Install prerequisite software 

sudo apt install net-tools git python3 python3-pip qemu qemu-kvm libvirt-daemon-

system libvirt-dev vim virt-manager bridge-utils 

2. Clone the GitHub repository 

git clone https://github.com/kryptoslogic/rdppot 

3. Change into the new directory and install required python libraries as sudo. 

cd rdppot && sudo pip install -r requirements.txt, recordclass, pip3 install 

git+git://github.com/tkuebler/pyping 
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4. Downgrade ‘aiorwlock’ python library to version 1.0.0 to fix imcompatability issues. 

sudo pip3 install --upgrade aiorwlock==1.0.0 

5. Modify the ‘main.py’ file in lines 23-25 to reflect the correct path, in this case 

‘/home/honeypot/rdppot’. 

 

Figure 22: Modifications made to the main.py file on lines 23-25 and line 38. 

6. Modify to pool size of line 38 to 2. 

7. Run virt-manager and create a new virtual machine with the Windows XP ISO, 512mb 

RAM, 2 CPU cores and 3GB of hard disk space. 

 

Figure 23: Setting the memory and CPU specifications on the VM. 
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Figure 24: Setting the hard disk size on the VM. 

8. Name the virtual machine ‘winxp_template’. 

9. Change the network adapter to virtio  

 

Figure 25: Setting the network adapter on the VM. 

10. Boot up the VM and install virtio drivers for the network adapter, as outlined in this 

video from 16:30, (Installing Windows XP into QEMU/KVM , 2020). 

11. Create a password for the admin account. 

12. Enable RDP following the same steps outlined in section 3.4.3. 

13. Enable auto login to allow the VMs to start up properly on their own, as outlined by 

John Savill, (Savill, 2002). 

14. Deploy the honeypot with the following command: 

sudo python3 main.py 

 

An RDP connection to the service can be seen in the below figure. 
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Figure 26: rdppot connected to via the Attack machine. 

 

3.4.6 Octopus 

Out of the three honeypots, octopus was the most straightforward to deploy. It was deployed 

on Ubuntu version 20.04.03 and used XRDP as its RDP service. The virtual machine was 

provided 4GB of RAM, 2 CPU cores and 20GB hard drive space. The following step was taken 

to install the software: 

1. Run the below two commands to download and install the honeypot: 

git clone https://github.com/qeeqbox/octopus.git && cd octopus && chmod +x 

setup.sh 

sudo ./setup.sh "rdp" 

 

An RDP connection to Octopus can be seen in Figure 27. 
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Figure 27: Octopus connected to via the Attack machine. 

 

3.5 Experimentation 

3.5.1 Fingerprinting 

Fingerprinting will be conducted against the devices primarily on a network and application 

level using two different tools: Nmap, and Xprobe2, (Lyon, 2022) (binarytrails, 2021). Nmap 

excels in port-based scanning and identification of systems primarily using TCP packets, while 

Xprobe2 is designed to fingerprint operating systems using ICMP packets. These experiments 

are based off the research analysed in section 2.4.1, primarily research discussed in section 

2.4.1.1 carried out by Dahbul et al. which used networking fingerprinting as a means of 

identifying anomalies in honeypots, (Dahbul, et al., 2017). The Nmap scans used are based off 

similar research by Mohammadzadeh et al. which used multiple types of Nmap scans, some of 

which have been used as the basis for the NMAP scans used in these experiments, 

(Mohammadzadeh, et al., 2013). The use of Xprobe2 is based off research conducted by 

Srinivasa et al. which outlined a honeypot fingerprinting framework, as discussed in section 

2.4.1.4, (Srinivasa, et al., 2021). This paper highlighted Xprobe2 as a potential fingerprinting 

tool that would be effective at identifying honeypots. Furthermore, the tool is also mentioned 

in two of the countermeasure research papers discussed in section 2.5 by Naik et al, (Naik, et 

al., 2018) (Naik, et al., 2021). 

 

Firstly, as seen in previous research, Nmap will be used to probe each device using two 

different types of scans, a quick scan, and a more thorough scan. The first scan attempts to 

fingerprint operating system, running services, and trace a route to the device. The second scan 
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does the same but also scans all the ports with a higher intensity. Each scan will be run 3 times 

against each machine, and if any differences are found between each scan, these will be noted. 

The flags for the two scans can be seen in Table 4. 

 
Table 4: The two different types of NMAP scans and their respective flags. 

Type Flags 

Quick -A -Pn 

Intense -sV -O -p 1-65535 -Pn --intensity 9 

 

Two types of Xprobe2 scans will be performed, a standard scan and a port based one targeting 

the RDP port 3389 using the ‘p’ flag, as can be seen in an example command below. 

xprobe2 192.168.1.4 -p tcp:3389:open 

Each scan will have its results recorded as well as its time to complete, alongside a network 

capture taken from the attacker’s machine using Wireshark. This capture file will be stripped 

of all traffic that was not to or from the attacker’s machine, using a script found in Appendix E 

- . This data can be used to retrieve accurate timing data and evaluate a level of network traffic 

created by each scan to determine how they compare in terms of noise. 

 

3.5.2 Latency 

Latency testing will consist of pinging each virtual machine and measuring the time it takes to 

reply as accurately as possible. This will be done using ICMP packets via the ping command, 

and TCP packets using paping, (Google, 2010). The advantage of using two tools is to 

demonstrate any differences in results between the two types of ‘pings’ that may be notable for 

determining the type of system. This experiment is based off of work discussed in section 2.4.4, 

first highlighted by Holz and Raynal, but further developed by Fu et al. who used both ICMP 

and TCP packets to check for latency, (Holz & Raynal, 2005) (Fu, et al., 2006). 

Each system will be tested 100 times from the attacker machine and the round-trip time will be 

recorded. These results can then all be compared to find any anomalies or outliers. The actual 

scans were carried out using two scripts to automate the process of running and parsing the 

results. There two scripts can be found in Appendix C. 

 

3.5.3 Behaviour  

Two tests will be done against the machines to determine behaviour as a factor. These two tests 

will focus on how the devices behave in certain circumstances to see if there are any clear 

differences in behaviour between legitimate and honeypot devices. This test is based on the 

fact that honeypots should not be able to connect out of their honey network and will determine 

whether or not the author has put in any measures to cripple the systems capabilities in this 

way. This experiment is primarily based off the research examined in section 2.4.2. The first 

experiment is inspired by a honeypot behaviour highlighted by Tsikerdekis et al. in section 

2.4.2.1, that honeypots often automatically redeploy themselves after having been accessed, 

(Tsikerdekis, et al., 2018). The further attack test is based off research by Uitto et al. which 

highlights the inability to conduct further attacks as a key behavioural characteristic of 

honeypots, (Uitto, et al., 2017). Therefore, if a device blocks further network communication 

it could be assumed it was a honeypot. 

 

The first will be an object permeance test where a new text file will be created on the systems 

home drive and left for 10 minutes. Any changes made to the file upon return will be noted. 
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The second test will involve furthering an attack from the device. For the Windows XP based 

rdppot, an attempt will be made to use FTP to access the ‘Victim’ virtual machine. The 

Windows 10 and Ubuntu based honeypots will use SSH to attempt to access the device. 

 

3.6 Evaluation 

The results from the experiments are to be evaluated on their effectiveness at correctly 

identifying honeypots from legitimate services in a purple teaming engagement. This 

effectiveness is judged on three factors: accuracy, speed, and discreetness. The most effective 

technique will be the one that can most accurately fingerprint a system in the fastest and most 

inconspicuous manner. The least effective method will be the one that is the least accurate, 

takes the most time, and creates the most notice. These evaluation parameters are based off 

similar fingerprint technique evaluation research by Mohammadzadeh et al. in their dynamic 

honeypot research, (Mohammadzadeh, et al., 2013). 

 

3.7 Conclusion 

This section of the report has discussed the methodology that will be used to carry out 

experiments fingerprinting RDP honeypots. The main experiments inspired by the research 

were first discussed, laying out the plan of testing. This was followed by the design of various 

parts of the experiment including the honeypots and legitimate services to be used, as well as 

the specifications around the virtualised environment and the virtual network that would be 

used to communicate between devices. The implementation of this design was then laid out, 

including full steps to recreate and configure each virtual machine. This was followed by an 

in-depth look at each experiment that was to be carried out, including the steps that were to be 

taken and references to any relevant literature that the experiment were based off. Finally, the 

evaluation method was discussed that is to be used to evaluate the results of the tests in regards 

to the overall aim of the report. 

  



 

 

 

 

46 

4. Results 

4.1 Introduction 

This section will analyse the results obtained from the experiments discussed in section 3.5 of 

this report. Any network data being examined has been cleaned to remove any network traffic 

that was out of the testers control, as mentioned in section 3.5.1. All experimentation was done 

on the same bare-metal hardware within a two-hour window, with each virtual machine being 

deployed as needed. The results will be analysed through the lens of effectiveness, judging 

them based off speed, accuracy, and stealth. 

 

4.2 Experiment 1 - Fingerprinting 

The first experiment aimed to evaluate the effectiveness of fingerprinting tools, Nmap and 

Xprobe2, against the honeypots. Each tool will be evaluated separately, looking at both types 

of scans that were conducted by each and comparing the results from the honeypots to their 

legitimate counterparts. 

 

4.2.1 NMAP 

The first scan performed with Nmap was a quick, all-rounder, scan that would be used to obtain 

quick results. Comparing the services and honeypots, no real difference was present in the scan 

results, as has been shown in Figure 28 and Figure 29. The results for the other four services 

can be found in Appendix F - NMAP Fingerprinting Results 

 
Figure 28: Nmap quick scan results for rdppot. 

 
Figure 29: Nmap quick scan results for Windows XP. 

These figures show no real difference between legitimate system and honeypot, showing that 

a quick Nmap scan does not add to any evidence of a honeypot. 

However, the intense Nmap scan showed more details as to the underlying architecture of the 

systems. For example, the difference between rdppot and Windows XP were very notable, as 

shown in Figure 30 and Figure 31. 
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Figure 30: Nmap intense scan results for rdppot. 

 
Figure 31: Nmap intense scan results for Windows XP. 

Firstly, the scan outright defines the honeypot as a Linux system. Comparing this to the initial 

quick scan is a giveaway of something being afoot. Furthermore, the service of 3389 is now 

identified as ‘tcpwrapped’ rather than the expected ‘ms-wbt-server’. Finally, the scan 

completed much quicker, taking only 16.47 seconds compared to the 125.75 seconds that the 

legitimate service took.  

This was a similar story for AHA and Windows 10, expect slightly more subtle, as shown in 

the two below figures. 
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Figure 32: Nmap intense scan for ad-honeypot-autodeploy (AHA). 

 
Figure 33: Nmap intense scan for Windows 10. 

The scan against the honeypot returns an unknown TCP/IP fingerprint, however, clear 

indicators of a Linux system can be seen within it by noticing the string ‘pc-linux-gnu’. The 

Windows 10 system also does not return an unknow fingerprinting, instead guessing it to be a 

Windows system. The Windows 10 system also has port 7680 open, something missing from 

the honeypot.  Finally, as seen with Windows XP and rdppot, there is a large difference in time 

to complete the scan. The scan against AHA only took 32.59 seconds compared to the 223.51 

seconds it took to complete the scan against the Windows 10 system. 

Finally, XRDP and Octopus showed absolutely no difference in their intense scan results. This 

is likely due to how basic Octopus is as a honeypot and is extremely similar to a standard XRDP 

service in its design. The only slight difference was in the time it took to complete, as shown 

in Figure 34 and Figure 35, but it is such a short amount of time it could not be reliable used. 
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Figure 34: NMAP intense scan for Octopus. 

 
Figure 35: NMAP intense scan against XRDP. 

These results show that for two out of three of the honeypots, comparing an intense and quick 

NMAP scan is an accurate and quick method of identifying a honeypot. This was not the case 

for the Linux based RDP service and honeypot which showed no difference in either scan. A 

table has been created to note if there were differences in the scans between the honeypots, as 

can be seen below. 

 
Table 5: A table noting if differences were seen in the scans against the pairings of honeypot and legitimate system. 

Services NMAP Quick NMAP Intense Xrpobe2 Xprobe2 Port 

rdppot and Windows XP N Y Y Y 

aha and Windows 10 N Y Y Y 

octopus and XRDP N N Y Y 

 

 

In terms of noise, the intense scans generated significantly more network traffic than the quick 

scans, as was expected. The number of packets generated by each scan has been summarised 

in Table 6. 
Table 6: The number of network packets generated by each NMAP scan against each service. 

Scan Type rdppot Windows XP AHA Windows 10 Octopus XRDP 

Quick 2089 2076 2075 2112 2106 2104 

Intense 131128 131377 131285 132171 131133 131133 
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The intense scan was much louder for each service, generating around 62 times as many packets 

over the course of the scan. This demonstrates how much more noise the intense Nmap scan 

generated compared to the quick scan, making the quick scan a stealthier, but significantly less 

accurate option. 

 

The second scan also took considerably longer to complete on the two legitimate Windows 

services. The time to complete in seconds has been plotted in a table and a figure below. 

 
Table 7: Time to complete both NMAP scans against each service, in seconds. 

Scan Type rdppot Windows XP AHA Windows 10 Octopus XRDP 

Quick 24.43 26.01 20 25.93 24.4 24.42 

Intense 16.47 125.75 32.59 223.51 27.36 27.09 
 

 
Figure 36: A bar chart of the time to complete each Nmap scan against each service. 

 

 

4.2.2 Xprobe2 

The first scan performed with Xprobe2 was the default scan. This made use of all the scripts 

used by Xprobe2 to identify operating systems with no extra configuration options used. 

Considering the age of Xprobe2 as a tool and its lack of popularity in recent years, the results 

obtained using it were extremely accurate. The tool identified the family of the operating 

system, Windows, or Linux, perfectly, with the only slight mistake being classifying Windows 

10 as Windows Server 2000 with a probability of 91%. These results have been summarised in 

the below table. 
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Table 8: Results of the normal Xprobe2 scan along with the real OS and probability. 

Service Xprobe2 OS Real OS Probability (%) 

rdppot Linux Linux 100 

Windows XP Windows XP Windows XP 100 

AHA Linux Linux 100 

Windows 10 Windows Server 2000 Windows 10 91 

Octopus Linux Linux 100 

XRDP Linux Linux 100 

 

The second Xprobe2 scan took advantage of specific ports, was not any more accurate than the 

first. It identified the same operating systems, with the only notable difference being that it 

identified Windows 10 as Windows NT 4 Server, with only a 77% probability. 

The most notable difference between the two scans was the number of packets used. While 

both low amounts, the second scan used almost twice as many packets on average, as shown 

in Figure 37. 

 

 
Figure 37: A bar chart of the number of network packets transferred during each scan against each service. 

 

There was a clear increase in the number of packets used by Xprobe2 with no notable difference 

in identification. 

Regarding speed, Xprobe2 scans completed quickly, with no scan taking longer than even a 

minute. The Linux based services, Octopus and XRDP, completed the quickest in both 

categories, with rdppot and Windows 10 taking the longest with their port-based scans, and 

Windows XP and AHA being the quickest in the default category, as shown in the below table. 

 
Table 9: Time to complete in seconds for each Xprobe2 scan against each service. 

Scan Type rdppot Windows XP AHA Windows 10 Octopus XRDP 

Default 22.54 2.93 2.4 25.61 4.25 4.86 

Port 46.4 7.32 11.2 44.97 5.55 5.52 
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This data has also been graphed for easy of comparison. 

 

 
Figure 38: A bar chart showing the time to complete each Xprobe2 scan against each service. 

 

The full raw results for Xprobe2 scans can be found in Appendix G - Xprobe2 Fingerprinting 

Results. 

 

4.3 Experiment 2 - Latency 

The results obtained from both latency tests were processed using standard deviation to account 

of any outliers in network traffic spikes or anomalies. These statistics have then been processed 

into box plots for easy comprehension. Network captures were also taken during the period the 

requests were being sent. These will be analysed to display how much traffic was generated to 

compare speed and noise. 

 

4.3.1 ICMP 

The first latency test relied on ICMP packets sent using the standard Linux ‘ping’ binary. The 

100 different requests sent to each system have had the round-trip times plotted in a box plot, 

as seen in Figure 39. The full raw data for ICMP RTT can be found in Appendix H - ICMP 

Latency. 
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Figure 39: A box plot of the round-trip time for ICMP pings against each service 

All the ICMP requests experiments generated exactly 200 network packets. Each test took 

slightly over 100 seconds to complete, as illustrated in the below figure. 

 

 

 
Figure 40:Time to complete ICMP ping test against each service 
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4.3.2 TCP 

The second latency test relied on sending TCP packets using ‘paping’. Each device had 100 

different requests sent. The round-trip time for each device has been plotted in the box plot 

below. The full raw results for TCP RTT can be found in Appendix I - TCP Latency 

 

 
Figure 41: A boxplot of the round-trip time for TCP pings to each service. 

Compared to the ICMP based test, there was a difference in the number of TCP packets sent to 

each device, as illustrated in Figure 42. 
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Figure 42: Number of TCP packets sent to each device during experiments 

There was a notable difference between Windows XP, rdppot, and the other four systems. This 

is likely due to an underlying difference between Windows XP and newer operating systems 

like Windows 10 and Ubuntu.  

Each test took slightly over 111 seconds to complete. The full timings have been shown in 

Figure 43. 
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Figure 43: Time to complete TCP ping test against each service. 

 

4.4 Experiment 3 - Behaviour  

The final experiment involved analysing the behaviour of the three different honeypots in two 

manners: the first for the persistence of a file after a 10-minute period, and the second the 

ability for perform a ‘further attack’ that was tested by attempting to connect to an SSH or FTP 

server on a ‘victim’ machine. The results have been recorded as either passing or failing the 

experiment. A pass counts as exhibiting behaviour expected from a normal machine, while a 

fail shows evidence the device is a honeypot.  

 

4.4.1 File Persistence 

This test involved creating a file on the honeypot, disconnecting, and reconnecting after 10 

minutes to examine if any changes had been made to the file. Of the three honeypots, rdppot 

had the only notable result. The file could not be found after reconnecting to the machine, 

showing the honeypot had been reset at some point between disconnecting and reconnecting. 

As shown in Figure 44, the file was created successfully under the user’s profile. 
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Figure 44: File "file.txt" created on the device and checked using the 'dir' command. 

When the tester reconnected to the device after 10 minutes, the file was no longer present, as 

shown in Figure 45. 
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Figure 45: The same directory after reconnecting, showing the honeypot has been tampered with. 

The other two honeypots did not show the same behaviour, with the file still being present on 

each device after the 10 minute testing period, as demonstrated in Figure 46 and Figure 47 on 

the AHA honeypot. 

 

 
Figure 46: The file being created inside the AHA honeypot. 
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Figure 47: The file persisting on AHA after 10 minutes. 

The same behaviour was seen on the Octopus honeypot as was seen on AHA. These results, 

along with the further attacks test, have been summarised in Table 10. The full results for this 

experiment can be found in Appendix J - File Persistence Results. 

 

 

4.4.2 Further Attacks 

The second behaviour test attempted to further an attack from the honeypot. Due to the nature 

of honeypots compared to legitimate systems, they should not be able to engage in any form of 

unethical behaviour. All three honeypots were able to do connect to either an SSH or FTP 

server, hence proving further attack would be possible. This has been summarised in Table 10. 

The full results for this experiment can be found in Appendix K - Further Attack Results. 

 
Table 10: Results of the two different behaviour tests (F = fail, P= pass) 

Test rdppot AHA Octopus 

File Persistence F P P 

Further Attack P P P 
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5. Discussion 

This project was untaken with the aim of identify and evaluate the most effective detection 

methods for purple team engagements against contemporary RDP honeypots. This section will 

answer the overall aim of this research by addressing each sub aim using the methods set out 

above. 

 

5.1 Existing Detection Methods 

The first research question aimed to answer what the existing honeypot detection methods were 

and how they compared against each other. This was key to identifying techniques that may be 

used against RDP honeypots for the purposes of the overall aim. The question was answered 

in an extensive literature review that examined many different academic sources from a variety 

of related topics, not limited to detection methods alone, but also the most recent honeypot 

developments, the remote desktop protocol itself, and the recent honeypot detection 

countermeasures.  

 

5.1.1 Fingerprinting 

The literature surrounding detection methods specifically was critically analysed in section 2.4. 

It began with an overview of the current research which highlighted the fact there was little 

research into anti-honeypot techniques, and no research specifically aimed at anti-honeypot 

techniques for RDP honeypots. However, from the research that did exist, a handful of different 

techniques could be found. The first technique, and one of the most popular, was various types 

of fingerprinting. Three different types of fingerprinting were proposed by Uitto et al. in a 2017 

survey of anti-honeypot techniques, (Uitto, et al., 2017). These were network, application, and 

system. Network fingerprinting took the form of using network scanning tools, like Nmap, or 

network latency testing, like the research conducted by Fu el al. that used round trip time as a 

distinguishing factor between honeypots and real systems, (Fu, et al., 2006). Also highlighted 

in the literature review was the use of Nmap to fingerprint honeypots. Dahbul et al. used Nmap 

to scan various honeypots and found differences in the results between them and the systems 

they were supposedly simulating, (Dahbul, et al., 2017). This technique proved effective after 

highlighting suspicious open ports, or just outright flagging the system as a honeypot. 

Similarly, Mohammadzadeh et al. used Nmap to test their dynamic honeypot systems, using a 

variety of scans for Nmap, some of which we used in the methodology of this research, 

(Mohammadzadeh, et al., 2013). These research papers offered tool-based network 

fingerprinting as an effective honeypot detection method, however, not a perfect technique of 

their own. Mohammadzadeh et al. did manage to evade Nmap scanning with their dynamic 

honeypots. 

Application fingerprinting was another type of fingerprinting technique discussed by Uitto. 

This involved examine the applications and services a device offered and comparing them to 

what was expected e.g., a user desktop with SSH, FTP, TELNET, HTTP, and SQL open would 

be deemed as suspicious, while a server with SSH, HTTP, and HTTPS would be seen as 

ordinary. While an important factor to keep in mind for those participating in offensive 

engagements, it is hard to draw concrete conclusions from these factors alone, however, 

combined with other techniques, this could be used as evidence, or an early-stage red flag of 

suspicion.  

The final technique proposed by Uitto was system fingerprinting. This was by far the most 

complex but could likely be the most accurate if performed correctly and could be very 

applicable to RDP honeypots since it only really works on high interaction honeypots. This 
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technique involved searching for logging or monitoring tools that had been hooked into the 

system to allow it to be monitored or maintained. This technique has been demonstrated in 

research by Holz and Raynal in 2005 in which they managed to detect the monitoring tool 

Sebek on a honeynet, on Linux, Windows, and OpenBSD systems, (Holz & Raynal, 2005). 

Within this category of system fingerprinting could also be categorised User-Mode Linux and 

virtualisation detection. UML was an old technique for virtualising systems and was used for 

honeypots to separate them from the bare metal system. Holz and Raynal proposed some 

methods of detecting these types of systems, but UML was not mentioned in any other research 

analysed in the literature review, therefore, this technique has been largely ignored. 

Virtualisation detection was another detection technique mentioned by Holz and Raynal and 

discussed in literature by Issa et al. in which they lay out methods for detecting a virtualised 

system, (Issa, 2012). Honeypots are almost always run virtually, therefore, being able to label 

a system as a virtual machine that would not be expected to be virtualised, like a user desktop, 

could be a giveaway of its nature. None of the techniques were applicable for QEMU/KVM 

systems, which were used for the RDP honeypots later examined in this research, however, the 

techniques for VMWare did prove effective for identifying Windows XP and Windows 7 

virtual machines. Therefore, system fingerprinting can be used effectively to identify 

honeypots, particularly being able to detect logging systems connected to the device as this 

could be an immediate red flag on a honeypot. 

Overall, a handful of the fingerprinting methods discussed stood out from the others, namely 

network fingerprinting and the ability to detect logging systems on the device. Network 

fingerprinting appeared to be the most straightforward technique and could be applicable to the 

greatest number of honeypots. Detecting logging systems could also be effective, however, 

only works on high interaction honeypots and requires a much greater technical ability from 

the attacker, and a lot of thorough prior research.  

 

5.1.2 Behaviour 

Several different papers examined how the behaviour of a system could be analysed to 

determine whether it is a honeypot. Mukkamala outlined a few key behavioural characteristics 

that honeypots exhibit compared to normal systems, (Mukkamala, et al., 2007). This included: 

 

1. A lack of network activity on the honeypot 

 

2. All interactions being logged 

 

3. Restricted bandwidth to prevent further attacks from said honeypot 

 

Mukkamala suggested the first attribute was nearly impossible to use as a reliable metric due 

to the requirement of long-term monitoring and a high chance of false positives. The other two 

attributes are exclusive to honeypots and, if observed, could be an instant giveaway of a 

honeypot. Other behaviours were suggested by Tsikerdekis et al. in 2018, (Tsikerdekis, et al., 

2018). The first of these techniques were automictic deployments. Many honeypots reset 

themselves to a default state after being attacked. Therefore, if an attacker connects to a 

machine, creates a file, disconnects, and reconnects after an amount of time, and the file is 

gone, this could be a sign the system had been reset, and would be an immediate giveaway of 

honeypot behaviour. Tsikerdekis also discussed dynamic intelligence. Some advanced 

honeypots will use AI to adapt to the user and further lure or convince them by changing file 

names. This type of behaviour could be implemented into an RDP honeypot and could be 

another obvious honeypot behaviour if a reliable technique was found to exploit it. The final 
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behavioural technique examined in the literature review was proposed by Uitto. This technique, 

which Uitto named Operation Analysis, involved attempting to further an attack from a 

honeypot to an external system. As mentioned by Mukkamala, honeypots should not be able 

to perform further attacks, therefore, if a system was unable to connect to other external systems 

for no obvious reason, it could be concluded it had been limited in its network ability due to its 

nature. 

Overall, a handful of different behavioural techniques were suggested, some more effective 

than others. Out of all the techniques, automictic redeployment is likely the most reliable as of 

writing and is one of the most straight forward. If a way of detecting dynamic intelligence 

reliable could be ascertained then that may become more reliable, but this is yet to be seen. 

 

5.1.3 Latency 

While it could be categorised under network fingerprinting, there is a significant amount of 

research done into latency testing against honeypots and, therefore, warrants its own category 

of technique. Latency testing takes advantage of the virtualised nature of honeypots, 

concluding that a virtualised system, often with additional loggings factors, would take longer 

to respond to a network request than an ordinary system. This technique was initially 

highlighted by Holz and Raynal in 2005 but is still relevant today, (Holz & Raynal, 2005). 

Tsikerdekis et al. also mention latency testing as a viable technique in 2018, (Tsikerdekis, et 

al., 2018). Actual testing of this method was undertaken in 2006 by Fu et al. against Honeyd 

systems using ICMP, TCP, and UDP based pings, (Fu, et al., 2006). They used the round-trip 

time to calculate a two-way link latency which could be used with their model to determine if 

a system was legitimate or a Honeyd device. This technique proved effective in their testing, 

however, required a lot of data gathering as a baseline to begin with and was therefore not 

quick to perform. However, the fundamentals of the technique are still visible and effective in 

certain scenarios.  

 

5.1.4 Default Configurations 

The final notable technique discussed in the literature review was default configurations. A 

very successful way of identifying honeypots was demonstrated by Morishita et al. in 2019 by 

creating fingerprints of default honeypots configurations and scanning the web for matches, 

(Morishita, et al., 2019). This research was done against 14 different SSH, TELNET, and HTTP 

honeypots and successfully identified over 19,000 honeypots. This technique proved to be 

extremely effective at identifying poorly deployed honeypots and could further be automated 

into a useful tool. It falls short due to not being able to identify honeypots that have had changes 

made to them, or systems that have not been fingerprinted yet. 

 

5.1.5 Conclusion 

Many different detection techniques were discussed in the literature review, under the general 

categories of fingerprinting, behaviour, and latency. Many of these techniques proved to be 

viable from the literature examined. The most stand out techniques were network 

fingerprinting, due to its simplicity, speed, and effectiveness, as well as some of the behavioural 

aspects like automatic redeployment since it appears to be a reliable and repeatable test, 

although falls short due to its time-consuming nature and suspicious activity carried out by the 

attacker. Latency testing also proved effective, although did require a lot of prior work in order 

to set an expected baseline that could be used for comparisons. Default configurations were 

very successful for poorly deployed honeypots but cannot be a reliable method in an offensive 

engagement since it only takes slight configuration changes to identify. 
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5.2 Most effective RDP honeypot detection method 

The second research question asked which of the detection methods discussed would be most 

effective in a purple team engagement. This question was answer by designing a methodology 

to test several techniques against real RDP honeypots and legitimate services in a simulated 

offensive engagement environment, as mentioned in the second objective. Three categories of 

tests were decided upon, fingerprinting, latency, and behaviour. Within these, two tests were 

designed under each: Nmap and Xprobe2 scanning for fingerprinting, ICMP and TCP packet-

based pings for latency, and object permanence and further attacks tests for behavioural 

analysis.  

The Nmap test consisted of two types of scans, a quick scan, and an intense scan. This was 

done to determine if a more intense scan would be more effective at identifying honeypots. 

Similarly, two Xprobe2 scans were used, a default scan and a port based one. Using multiple 

tools would provide more interesting results since one tool may perform more effectively than 

the other, like the work carried out by Mohammadzadeh, (Mohammadzadeh, et al., 2013). 

Two different latency tests were performed to identifying any differences in effectiveness 

between ICMP and TCP packets, like the tests carried out by Fu et al., (Fu, et al., 2006). Pings 

were sent 100 times to each device and standard deviation used to standardise the results to 

account for any latency spikes. 

Finally, the behavioural tests were based off the research by Tsikerdekis around automatic 

redeployment, (Tsikerdekis, et al., 2018). This was the basis for the file persistence tests that 

consisted of creating a file on the system, disconnecting, and reconnecting after 10 minutes to 

see if the file had been edited. The further attack test was done by attempting to connect to a 

SSH or FTP server as means of simulating a continued attack, as inspired by Mukkamala’s 

statement that honeypots should not be able to further an attack, (Mukkamala, et al., 2007). 

Each set of tests were carried out against three RDP honeypots and three legitimate RDP 

service, except the behaviour tests which were only tested against the honeypot systems.  

These experiments were then executed, and the results were recorded, to meet objective three. 

The raw results were processed into graphs and tables to be presented in section 4. The results 

were to be evaluated based off three factors that would make them effective for a purple team 

engagement: accuracy, speed, and discreetness. In the following three sections, the results from 

the three categories of experiments will be discussed and compared with the literature discussed 

in section 2 of this report. The results will be evaluated using the proposed metrics above and 

a conclusion drawn about the effectiveness of each, thus meeting the first half of object four. 

 

5.2.1 Fingerprinting 

The results show that fingerprinting is a viable method for identifying certain RDP honeypots, 

specifically AHA and rdppot which were emulating a Windows system. Since they were being 

hosted on a Linux system, this could be identified by both Nmap and Xprobe2, thus hinting 

heavily that they were honeypots. This could be explained by a legitimate Linux system being 

used to host legitimate Windows virtual machines; however, this would be uncommon 

behaviour to see widely across an enterprise, especially for basic user machines. Comparing 

the two tools, Nmap and Xprobe2, the later managed to identify each system correctly using a 

fraction of the network packets than Nmap. It also ran the scans significantly faster than Nmap. 

While Nmap did produce more results, showing open ports and an OS fingerprint, as well as 

attempting to enumerate services, these details were not particularly relevant to determining 

the nature on the system within the given parameters of these experiments.  
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Of the two different Xprobe2 scans, there was not a significant difference between the findings 

of the two. Therefore, the first scan was more effective due to the smaller amount of traffic 

generated. This scan was fast, quiet, and accurate compared to the other three and would be 

best suited to be used by a purple team member attempting to evaluate the nature of a system.  

Compared to a similar fingerprint test by Dahbul, which only used Nmap to probe devices, this 

experiment tested two different network fingerprinting tools and found varying levels of 

success with both, (Dahbul, et al., 2017). This test also used multiple types of scans, like the 

research carried out by Mohammadzadeh, however, not as many, choosing only to do a quick 

scan and an intense scan, (Mohammadzadeh, et al., 2013). The results found in this experiment 

were in line with Mohammadzadeh results of Nmap scans. His research concluded Nmap was 

effective at identifying operating systems but could be loud and intrusive. He also noted some 

of Nmap’s short comings like its failure to obtain accurate results of systems behind firewalls 

that were not tested in this experiment.  

 

5.2.2 Latency 

The findings from the latency experiments were unexpected compared to prior research, which 

found that honeypots have a longer RTT than the service they imitate, (Fu, et al., 2006). The 

ICMP and TCP scans showed differing timings between the two for the RTT towards the 

honeypots. The ICMP results showed no real pattern, with some services taking longer to 

respond than their honeypot counterpart and vice versa. The TCP tests did show the honeypots 

taking longer on average than their honeypot counterpart, except for Octopus and XRDP which 

showed XRDP as taking longer on average. Each ICMP test took around 100 seconds, and the 

average TCP scan took around 111 seconds, making neither of them faster than the majority of 

the Nmap or Xprobe2 scans. Each latency test sent less packets than any Nmap scan but more 

than either of the Xprobe2 scans. Therefore, due to the low accuracy, and overhead of first 

requiring a real system to create a benchmark, combined with the length of time and noise, 

latency testing is the weakest of the three. 

Examining the ICMP results, these were unexpected compared to the literature reviewed. One 

of the most prominent pieces of research carried out in this area by Fu et al. found a consistent 

difference between their honeypots and legitimate services in terms of ICMP and TCP latency, 

however, the testing carried out in this report found inconsistent behaviour for ICMP testing, 

with more consistent behaviour for the TCP pings, (Fu, et al., 2006). Surprisingly, many of the 

honeypots responded quicker to ICMP pings than their legitimate counterpart, like AHA and 

Octopus. The TCP tests were more in line with Fu’s research, with both AHA and rdppot taking 

longer to respond, however, octopus still responded faster than its counterpart XRDP. 

 

5.2.3 Behaviour 

The behaviour tests highlighted an area of weakness for only one honeypot, rdppot. The failure 

to behave as a normal service could be an immediate giveaway of the nature of the device, 

more so than things like fingerprinting where it could be viable to have a Windows virtual 

machine running on a Linux server without it being a honeypot. However, this was the only 

honeypot to fail the file persistence test. Both AHA and Octopus did not tamper with the file 

after the ten-minute period. It is unclear how these two-services handle cleaning themselves 

post-attack. All three honeypots allowed further attacks; however, it could be argued that 

segmentation of the honeypot is the role of the administrator deploying the devices and not a 

task the honeypots themselves should be responsible for. For this reason, it is unclear its further 

attack simulation is a viable method for detecting honeypots in real world engagements, 

however, due to the fact an organisation could be held responsible for breaking the law if their 
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honeypot was used to carry out further attacks, it can be assumed that most administrators 

deploying honeypots would properly segment them from the rest of the environment, especially 

the internet. Therefore, while this technique appears useless in these experiments, on paper it 

should still be noted as having great potential in a real enterprise environment.  

These behavioural tests were based off literature examined within the literature review. The 

file persistence test was based off Tsikerdekis analysis of automatic redeployment, 

(Tsikerdekis, et al., 2018). Their statement that honeypots relied on automatic redeployment to 

easily maintain themselves did prove true for one of the honeypots, rdppot, which appeared to 

reset itself back to a default state in the time between disconencting and reconnecting. This 

behaviour was not exhibited by any of the other honeypots examined. Furtheremore, the further 

attack test, based on research by both Uitto and Mukkalama did not appear to be inheriterly 

true of any of the honeypots, (Uitto, et al., 2017) (Mukkamala, et al., 2007). This shows there 

was no inbuilt mechanism to limit the honeypots behaviour, however, it could be argued that 

the task of limiting the honeypots network capability lay with the party deploying the honeypot, 

not the honeypot itself. Thererfore, this study was unable to determine if this behavuoural 

metric would be viable in a purple team engagement.  

 

5.2.4 Conclusion 

By analysing the results of the experiments undertaken in this report and comparing them with 

the literature examined earlier, a conclusion can be drawn around which detection technique is 

most effective in a purple team engagement. From the data obtained, Xprobe2 default scans 

were the most accurate, fastest, quietest, and thus the most effective at identifying honeypots 

by revealing their underlying operating system. Nmap scans were also effective, and by 

comparing the results of the quick and intense scans, discrepancies could be seen regarding 

operating systems. However, Nmap was much louder and slower than Xprobe2 for only slightly 

more verbose results. Both tools could be used in combination in a purple team exercise to 

build a confident case of the nature of a device. These results were in line with what was 

expected based on the literature discussed above. Latency testing appears infeasible outside of 

a simulated lab environment. The inconsistency in round trip time in a live network would ruin 

any chance of accurately evaluating a machine in a short time frame. This was in stark contrast 

to Fu et al. who found the technique to be reliable and effective, (Fu, et al., 2006). To truly 

evaluate the potential of behavioural analysis, a more realistic testing environment is required, 

however, exploiting automatic redeployment was an accurate way to identify a honeypot, even 

it if was slow. There was a lack of literature around testing these attributes in simulated or real 

world scenarios, therefore, it is challenging to compare these results to other research, however, 

some of the behaviour exhibited by rdppot lined up with Tsikerdekis evaluation of automatic 

redeployment, while the rest of the honeypots did not, (Tsikerdekis, et al., 2018).  

 

5.3 Technique, Honeypot, and Network Improvements 

The final research question asks what improvements could be made to the detection method 

discussed, the RDP honeypots themselves, and the networks they are deployed into to improve 

their effectiveness. This question will be answered by meeting the second half of objective 

four. 

 

5.3.1 Detection Method  

Improvements could be made to the network fingerprinting in a number of ways. Firstly, only 

two network fingerprinting tools were used, Nmap and Xprobe2. Tools like NetScan Tools Pro 

or SinFP3 could also be tested, as were used by Mohammadzadeh et al. in their research, 
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(Mohammadzadeh, et al., 2013). Specifically, to the tools used, further research could be done 

using more types of Nmap scans to fine tune what the most effective scan would be to identify 

an RDP honeypot. Only two types of Nmap scans were used - quick and intense - but there are 

a variety of Nmap scans and scripts that could be experimented with to find the most effective 

results. Mohammadzadeh et al. make note of seven different scans used in their research, but 

even more scans could be designed and tested, (Mohammadzadeh, et al., 2013). 

It is unlikely anything can be done to improve latency testing to the point where it would be 

suitable in a purple team engagement. If a method of obtaining a consistant round trip time that 

is not marred by unpredicable factors, then perhaps this method may be viable. 

Regarding behavioural tests, analysis of automatic redeployment could be automated into a 

tool to carry it out more conveniently. This tool could be configurable for the actions it takes 

once connecting and how long it takes to reconnect. In general, the behavioural techniques 

would likely implement from machine learning. This could be used to detect unusual behaviour 

and thus detect a honeypot.  

 

 

5.3.2 RDP Honeypot  

This report has inadvertently highlighted the lack of quality solutions within the RDP honeypot 

space. All three honeypots were easily identifiable via fingerprinting, with seemingly a poor 

attempt made to hide this fact.  

There is no standout service within open-source RDP honeypots. AHA is the strongest 

contender but could greatly benefit from more effective countermeasures. 

Existing techniques like fuzzing could be implemented into these various RDP honeypots to 

prevent fingerprinting attacks and better mimic their legitimate counterparts, as shown in 

research by Naik et al. who found fuzzing to be an effective technique to disguise a honeypot, 

(Naik, et al., 2018). This would require significant further study and development on one of 

the three open-source projects. 

The most effective countermeasure to the techniques discussed in this report would be either 

using, or spoofing, Windows as the underlying operating system the honeypot is deployed on. 

Xprobe2 was able to identify the honeypots as running on Linux, a suspicious factor that could 

lead to them being identified as honeypots. An RDP honeypot could be developed to run on 

Windows, making use of Microsoft’s Hyper-V virtual machines instead of KVMs, (Microsoft, 

2022). 

Like rdppot, pooling could be used by other honeypots to improve their capabilities. Rdppot 

sets up a pool of virtual machines that are deployed as attackers connect, allowing multiple 

attackers to be logged at once, (Kryptos Login, 2019). This could be taken a step further by 

reassigning an attacker the same virtual machine if they connect within a given time window. 

This would defeat the automatic redeployment behaviour while still allowing other attackers 

to be logged on other virtual machines. 

 

5.3.3 Networking  

There are a handful of steps that could be taken by network administrators when setting up an 

RDP honeypot in their network. Research published in 2006 by Xuxian Jiang et al. found 

honeynets to be an effective next step to the singular honeypot, (Jiang, et al., 2006).  Their 

research included the design and implementation of VM based honey farm architecture which, 

when tested in the real world, proved to be an effective way of capturing and detecting attacks. 

The advantage of using a honeynet rather than a singular honeypot is that it can simulate a more 

realistic network to convince an attacker that the system they have accessed is legitimate. It 
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can also allow for more information to be gathered about an attacker, regarding motive or goal, 

if there is an opportunity for lateral or horizontal movement within the network. 

It is important that honeypots are deployed in parts of the network that isolate them from any 

production systems. This way they cannot be used to perform traversal into other parts of the 

network once accessed. Moreover, virtualising honeypots, or deploying them within 

containers, will also increase the security of the network. While most of the honeypots 

mentioned in this paper deploy virtual machines of their own in the form of KVM/QEMU 

VMs, the added layer of security builds a defence-in-depth model that prevents the network 

getting attacked even if an escape is found for KVM/QUMU virtual machines. 

 

5.4 Future Work 

This final section of discussion will present future avenues of research that could build on what 

has been presented in this report, including other fingerprinting techniques, counter measures, 

and other angles of research. 

This study could be repeated using different tools, specifically for the network fingerprinting 

tests. Only Nmap and Xprobe2 were used for testing which only allowed the performance of 

those two tools to be evaluated. Other network fingerprinting tools, like Ettercap and p0f could 

also be tested in a similar manner to determine if they could be more effective ways of labelling 

honeypots, (Ettercap, 2022) (Zalewski, 2014). The primary difference these two tools present 

over Nmap and Xprobe2 is that they engage in passive fingerprinting, compared to Nmap and 

Xprobe2’s active fingerprinting. Research conducted into passive fingerprinting found it to be 

an effective technique for identifying access points in an offensive scenario while also being 

less intrusive, therefore, this could also be a viable technique for identifying honeypots, (Gao, 

et al., 2010).  

A further study could analyse the fingerprinting tools used in more details. Nmap has a plethora 

of scanning options, however, this research only used two different types of scans. Many other 

types of scans were noted in the literature review, specifically presented by Mohammadzadeh 

et al. in their research, (Mohammadzadeh, et al., 2013). The other scans presented by them 

could also be tested to determine if they are significantly more or less effective than the two 

scans used in this research. Furthermore, the authors also highlighted one of Nmap’s main 

weaknesses; an inability to work past firewalls. For this reason, future work could look to repeat 

the methodology in this report with a more realistic, enterprise network environment that uses 

firewalls or an IDS/IPS solution. This has also been highlighted in research published in 2016 

which found Nmap to give mixed results when identifying systems behind firewalls, (Im, et 

al., 2016). 

Further work needs to be done to establish whether the countermeasures posed in this research 

would be truly effective against the techniques outlined. Implementing a fuzzing system, as 

proved to be effective by Naik et al., could be an interesting area of research to identify whether 

this technique could also effectively be applied to honeypots, (Naik, et al., 2018). Moreover, 

building a new RDP honeypot from the ground up, with these detection techniques in mind, 

could also produce interesting findings as to whether it is possible to develop an RDP honeypot 

that is immune to these detection techniques. This could include better OS spoofing if the 

honeypots are Linux based or delaying Nmap scan times to be more in line with their legitimate 

counterparts. Further research could also explore building a honeypot natively on Windows to 

tackle the operating system identification issue.  

Further research is also required to determine the effectiveness of techniques that were not 

included in this research but were highlighted in the literature review, mainly logging and 

virtual machine detection. Both of these areas of research were highlighted in research by Holz 
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and Raynal but were unable to be performed in this research due to lack of technical expertise, 

(Holz & Raynal, 2005). Furthermore, there was no research found on detect KVM/QEMU 

virtual machines, which were the primary virtual machine used to deploy systems by the 

honeypots that did so. Finding techniques that could effectively detect anomalous logging 

systems could be an accurate way of identifying honeypots. 
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6. Conclusions 

The main goal of this study was to identify and evaluate the most effective detection methods 

for purple team engagements against contemporary RDP honeypots. For a technique to be 

effective, it would have to be fast, accurate, and quiet with regards to network traffic. This 

report began by outlining this aim along with a discussion around the high number of attacks 

against RDP services, especially over the last few years. The scope and structure of the research 

was also outlined here.  

This section was followed by a thorough literature review which looked at several topics under 

the umbrella of RDP honeypots, including an overview of honeypots and their most recent 

developments, the RDP service itself, existing honeypot detection methodologies used against 

other services like SSH and TELNET, and finally, potential countermeasures to these 

techniques. The detection methods discussed included multiple types of fingerprinting attacks, 

behavioural analysis, virtualisation detection, latency disparities, and default configurations.  

Information gathered from the literature review was used as a basis to create the third section 

of this study, the methodology. This section outlined the design and implementation of a 

network of three honeypots and three comparable legitimate services, including the honeypots 

and services to be used, the design of the virtual network and virtual machines, and instructions 

as how to deploy the services before testing. This section also laid out the experiments that 

would be run against each service, backing each one up with corresponding literature discussed 

in the prior section. This section also discussed how the results of the experiments would be 

evaluated. 

After laying out the methodology, the experiments were executed, and the results were 

recorded for each experiment against each service. Results were recorded using screenshots of 

scans, Wireshark traffic analysis and bespoke scripts to automate the running and processing 

of results for latency scans. Full, raw results were recorded within the appendices with the most 

prevalent results displayed within this section, along with tables used to summarise things like 

timings and packet counts.  

The results were followed by the discussion section, where the results were analysed, and the 

three techniques were evaluated in depth against the three characteristics of an effective 

detection method, speed, accuracy, and noise. This section also discussed countermeasures for 

the outlined techniques as well as potential future work based off the finding of this research. 

 

This study has identified three techniques for identifying honeypots, all to various levels of 

effectiveness. Of the three techniques discussed, fingerprinting using the basic Xprobe2 scan 

would be the most effective for someone engaging in a purple team exercise attempting to 

evaluate the nature of a device. It was very accurate, identifying the underlying operating 

system nearly perfectly. It was fast, completing the scan in 10 seconds on average and it was 

also the quietest, generating only 11 packets on average. The other fingerprinting techniques 

were also accurate and quick compared to other types of network scans, however, were either 

slower or louder than the basic Xprobe2 scan. The latency tests, while could be used to 

distinguish a real device from a honeypot, relied on the attacker first knowing for sure that a 

device was legitimate to use as a benchmark. Furthermore, in a real-world exercise, there would 

be a lot of uncontrollable and unknowable variables like distance between machines, currently 

flowing network traffic, bandwidth bottlenecks and network configurations, that make this 

technique unviable in a real-world setting. Finally, the behaviour tests were effective to some 

extent against only rdppot, where the file was removed after disconnecting. From the research, 

this appears to be one of the weakest experiments. However, it is likely that if these honeypots 

were deployed in the real world, more care would be taken to segregate them from the rest of 
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the network. Therefore, the further attack test, while completely unsuccessful in this research, 

may be a far more effective technique in the real world. For an organisation to deploy a 

honeypot and not take proper steps to mitigate the damage it could do would be irresponsible. 

However, from the research carried out in this report, in the given test environment, 

fingerprinting with Xprobe2 was the most effective method for a purple team to use to identify 

RDP honeypots. 

In general, therefore, it seems that RDP honeypot detection is still an under researched topic. 

All three honeypots had glaring weaknesses that need to be addressed if these honeypots hope 

to be at all effective solutions. These findings will be of interest to any persons who develop 

RDP honeypots, or those interested in making use of them. Primarily, these finding will be of 

interest of those engaging in purple teaming exercises who are attempting to distinguish real 

and fake systems.  

One of the major limitations of this study was the behavioural tests. Due to the simulated nature 

of the design, it lacked the real-world implantation of a honeypot in an existing enterprise 

network. This heavily influenced the results of those experiments. A better testing ground 

would be having the honeypot deployed in a real environment to truly examine its behaviour. 

Notwithstanding these limitations, the study suggests that the behaviour of these RDP 

honeypots is primarily dependents on the way they are implemented. All three lacked any of 

their own boundaries when it came to further attacks. 

This area of research could be continued in two directions. The first would be to research and 

develop effective countermeasures that could be implemented on top of, or part of, existing 

RDP honeypots. Alternatively, since there is no standout RDP honeypot solution, effort could 

be put into developing an effective, dynamic RDP honeypot from the ground up, with the 

techniques in this paper kept in mind during design and development.  

There is, therefore, a definite need for further research into RDP honeypot detection, as well as 

further development into opensource RDP honeypots that are simply to use while being highly 

customisable, versatile, and inconspicuous.   
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8. Appendix 

8.1 Appendix A - Risk Analysis 

Risk Likelihood 

(L) 

Consequence 

(C) 

Impact 

(L*C) 

Remediation Type  Class 

Unable to run 

demanding VMs 

on existing 

hardware. 

2 3 6 Use university resources to run 

more demanding virtual 

machines. 

Technical Acute 

Losing Data 2 5 10 All data will be backed up to 

the cloud (Google Drive) and a 

local hard drive. 

Technical Acute 

Outdated 

Software 

2 3 6 Replacements will be searched 

out, or alternative virtual 

machines set up to support 

older technologies. 

Technical Chronic 

Personal 

sickness 

1 4 4 Project work will be spread as 

evenly as possible over the 

given time period meaning any 

short-term illness should not 

lead to a drastic increase in 

work. 

Non-technical Chronic 

Time 

Management 

Failures 

2 5 10 The project has been planned 

out in a Gannt chart on a 

week-by-week basis. As long 

as each week’s tasks are 

completed the project will stay 

on track. 

Non-Technical Chronic 

Estimation 

Errors 

2 5 10 Extra time has been left at the 

end of the project plan before 

the deadline to compensate for 

any estimation errors. 

Non-Technical Chronic 

Another 

COVID-19 

Lockdown 

1 3 3 The project could be fully 

completed outside of the 

university with only a handful 

of issues. 

Non-Technical Chronic 

 

8.2 Appendix B - Ethics Report 
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8.3 Appendix C - TCP and ICMP latency scripts 

8.3.1 TCP 

#!/bin/bash 

#requires the paping binary in the same directory this script is run 

output_file=$1_TCP_$2.csv 
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echo "Sending $2 TCP packets to $1" 

./paping $1 -p 3389 -c $2 --nocolor > output.txt 

echo "grep-ing timings..." 

grep -Po "time=\K.{0,4}" output.txt > output_c.txt 

artt=$(grep -Po "Average = \K.*" output.txt) 

echo "average rtt = $artt" 

echo "deleting old output file..." 

rm output.txt 

c=1 

while IFS="" read -r l || [ -n "$l" ] 

do 

  printf '%s\n' "$c, $l" >> $output_file 

  c=$((c+1)) 

done < output_c.txt 

rm output_c.txt 

echo "average, $artt" >> $output_file 

echo "Done" 

 

8.3.2 ICMP 

#!/bin/bash 

output_file=$1_ICMP_$2.csv 

echo "Sending $2 ICMP packets to $1" 

ping -c $2 $1 > output.txt 

echo "grep-ing timings..." 

grep -Po "time=\K.*" output.txt > output_c.txt 

artt=$(cat output.txt | tail -1| awk '{print $4}' | cut -d '/' -f 2) 

echo "average rtt = $artt" 

echo "deleting old output file..." 

rm output.txt 

c=1 

while IFS="" read -r l || [ -n "$l" ] 

do 

  printf '%s\n' "$c, $l" >> $output_file 

  c=$((c+1)) 

done < output_c.txt 

rm output_c.txt 

echo "average, $artt" >> $output_file 

echo "Done" 

 

8.4 Appendix E - PCAPNG Cleaning Script 

#!/bin/bash 

 

FILE_COUNT=$(ls *.pcapng | wc -l) 

FILTER="ip.addr==192.168.10.139&&ip.addr!=192.168.10.1" 

echo "[*]Cleaning $FILE_COUNT pcapng files for the filter $FILTER" 

for f in *.pcapng 

do 

 echo "[+]Cleaning $f ..." 
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 /Applications/Wireshark.app/Contents/MacOS/tshark -r $f -Y $FILTER -w 

clean_${f} 

 echo "[+]Saved clean file as clean_$f" 

 echo "[-]Deleting $f ..." 

 rm $f 

done 

 

echo "[*]Finished cleaning $FILE_COUNT files" 

 

8.5 Appendix F - NMAP Fingerprinting Results 

8.5.1 Rdppot vs Windows XP - Quick Scan 

 
Figure 48: Result of quick scan against rdppot. 

 
Figure 49: Result of quick scan against Windows XP. 

 

8.5.2 Octopus vs XRDP - Quick Scan 

 
Figure 50: NMAP quick scan against Octopus. 
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Figure 51: NMAP quick scan against XRDP. 

 

8.5.3 AHA vs Windows 10 - Quick Scan 

 
Figure 52: NMAP quick scan results against AHA. 
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Figure 53: NMAP quick scan results against Windows 10. 

 

8.5.4 Rdppot vs Windows XP - Intense Scan 

 
Figure 54: Results of intense Nmap scan against rdppot. 

 
Figure 55: Results of intense Nmap scan against Windows XP. 
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8.5.5 Octopus vs XRDP - Intense Scan 

 

 
Figure 56: Results of the intense Nmap scan against Octopus. 

 
Figure 57: Results of the intense Nmap scan against XRDP. 

 

8.5.6 AHA vs Windows 10 - Intense Scan 
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Figure 58: Results of the intense Nmap scan against AHA. 

 
Figure 59: Results of the intense Nmap scan against Windows 10. 

 

8.6 Appendix G - Xprobe2 Fingerprinting Results 
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8.6.1 Rdppot vs Windows XP - Normal 

 
Figure 60: Result of Xprobe2 normal scan against rdppot. 
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Figure 61:Result of Xprobe2 normal scan against Windows 10. 
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8.6.2 Octopus vs XRDP- Normal 

 
Figure 62: Result of Xprobe2 normal scan against Octopus. 
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Figure 63: Result of Xprobe2 normal scan against XRDP. 
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8.6.3 AHA vs Windows 10- Normal 

 
Figure 64: Result of Xprobe2 normal scan against AHA. 
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Figure 65: Result of Xprobe2 normal scan against Windows 10. 
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8.6.4 Rdppot vs Windows XP - Port 

 
Figure 66: Result of Xprobe2 port scan against rdppot. 
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Figure 67: Result of Xprobe2 port scan against Windows XP. 
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8.6.5 Octopus vs XRDP - Port 

 
Figure 68: Result of Xprobe2 port scan against Octopus. 
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Figure 69: Result of Xprobe2 port scan against XRDP. 
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8.6.6 AHA vs Windows 10 - Port 

 
Figure 70: Result of Xprobe2 port scan against AHA. 
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Figure 71: Result of Xprobe2 port scan against Windows 10. 

 

8.7 Appendix H - ICMP Latency 

Table 11: The results of ICMP latency testing against each service in milliseconds. 

rdppot winxp AHA win10 octopus xrdp 

2.22 0.663 0.263 0.264 0.177 0.734 

0.248 0.211 0.214 0.334 0.197 0.309 

0.243 0.239 0.267 0.32 0.187 0.291 

0.226 0.27 0.315 0.337 0.168 0.3 

0.243 0.47 0.25 0.384 0.173 0.25 

0.265 0.249 0.231 0.326 0.203 0.309 

0.268 0.234 0.245 0.398 0.2 0.266 

0.272 0.227 0.249 0.425 0.202 0.256 

0.708 0.278 0.246 0.375 0.217 0.308 

0.285 0.203 0.251 0.344 0.197 0.285 

0.238 0.203 0.243 0.325 0.523 0.249 

0.273 0.232 0.238 0.52 0.243 0.217 

0.27 0.292 0.631 0.409 0.198 0.271 

0.261 0.205 0.289 0.378 0.169 0.318 
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0.256 0.266 0.258 0.315 0.199 2.29 

0.253 0.238 0.248 0.344 0.197 0.516 

0.294 0.31 0.275 0.341 0.18 0.28 

0.278 0.241 0.232 0.345 0.201 0.334 

0.251 0.272 0.297 0.636 0.19 0.267 

0.259 0.215 0.273 0.351 0.218 0.253 

0.286 0.254 0.269 0.404 0.192 0.28 

0.299 0.241 0.288 0.387 0.2 0.342 

0.275 0.212 0.301 0.337 0.27 0.31 

0.247 0.203 0.265 0.351 0.374 0.312 

0.269 0.227 0.279 0.309 0.355 0.328 

0.253 0.262 0.277 0.371 0.204 0.336 

0.255 0.243 0.246 0.459 0.212 0.666 

0.266 0.213 0.231 0.328 0.237 0.307 

0.262 0.222 0.235 0.339 0.221 0.283 

0.28 0.223 0.244 0.384 0.208 0.328 

0.282 0.23 0.251 0.388 0.224 0.507 

0.268 0.21 0.339 0.363 0.188 0.324 

0.258 0.244 0.242 0.33 0.21 0.409 

0.289 0.255 0.233 0.401 0.184 0.385 

0.593 0.248 0.267 0.36 0.19 0.547 

0.236 0.192 0.278 0.348 0.217 0.245 

0.256 0.255 0.286 0.622 0.219 0.334 

0.313 0.264 0.287 0.389 0.203 0.242 

0.321 0.267 0.27 0.34 0.211 2.5 

0.302 0.256 0.229 0.28 0.277 2.25 

0.217 0.213 0.245 0.335 0.313 0.338 

0.21 0.302 0.255 0.335 0.229 0.473 

0.312 0.225 0.259 0.38 0.218 0.291 

0.267 0.208 0.283 0.342 0.168 0.314 

0.27 0.276 0.25 0.416 0.2 0.26 

0.249 0.229 0.248 0.357 0.197 0.691 

0.246 0.405 0.25 0.335 0.183 0.316 

0.27 0.327 0.252 0.749 0.185 0.536 

0.256 0.448 0.263 0.353 0.174 2.26 

0.23 0.251 0.258 0.316 0.175 0.339 

0.26 0.217 0.243 1.14 0.192 0.248 

0.276 0.26 0.26 0.322 0.244 0.284 

0.253 0.246 0.245 0.298 0.182 0.266 

0.228 0.597 0.241 0.304 0.208 0.294 

0.238 0.213 0.234 0.339 0.37 0.295 
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0.271 0.215 0.281 0.359 0.183 0.358 

0.252 0.212 0.246 0.329 0.194 0.287 

0.28 0.218 0.244 0.33 0.251 0.249 

0.289 0.217 0.245 0.313 0.693 0.279 

0.263 0.246 0.233 0.355 0.194 0.246 

0.251 0.197 0.265 0.373 0.222 0.365 

0.254 0.228 0.257 0.438 0.184 0.261 

0.282 0.223 0.248 0.351 0.245 0.536 

0.257 0.235 0.248 0.327 0.195 2.28 

0.249 0.216 0.266 0.367 0.22 0.392 

0.297 0.224 0.258 0.406 0.183 0.337 

0.245 0.231 0.266 0.361 0.185 0.356 

0.842 0.216 0.278 0.356 0.181 0.319 

0.242 0.216 0.25 0.352 0.203 0.301 

0.246 0.233 0.329 0.362 0.182 0.327 

0.259 0.226 0.266 0.339 0.214 0.3 

0.263 0.22 0.333 0.365 0.217 0.372 

0.272 0.224 0.289 0.34 0.435 0.286 

0.301 0.222 0.264 0.383 0.603 0.433 

0.281 0.209 0.282 0.349 0.316 0.295 

0.265 0.252 0.567 0.357 0.214 0.284 

0.273 0.209 0.259 0.368 0.3 0.421 

0.229 0.192 0.257 0.344 0.207 0.286 

0.253 0.401 0.253 0.368 0.189 1.61 

0.241 0.272 0.251 0.325 0.221 2.26 

0.263 0.258 0.237 0.339 0.206 0.286 

0.249 0.274 0.271 0.334 0.19 0.303 

0.244 0.225 0.281 0.464 0.236 0.305 

0.238 0.84 0.236 0.712 0.271 0.286 

0.252 0.212 0.229 0.409 0.2 0.358 

0.273 0.22 0.257 0.361 0.199 0.314 

0.237 0.232 0.244 0.458 0.28 0.344 

0.25 0.232 0.251 0.379 0.253 0.34 

0.259 0.257 0.245 0.462 0.198 0.352 

0.277 0.224 0.244 0.313 0.178 0.309 

0.257 0.204 0.273 0.303 0.186 0.285 

0.276 0.21 0.289 0.328 0.343 0.324 

0.257 0.346 0.254 0.317 0.207 2.28 

0.23 0.226 0.251 0.381 0.193 0.685 

0.242 0.269 0.25 0.318 0.21 0.255 

0.251 0.24 0.265 0.375 0.27 0.338 
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0.238 0.221 0.255 0.392 0.255 0.35 

0.542 0.285 0.235 0.337 0.291 0.307 

0.26 0.24 0.243 0.398 0.168 0.311 

0.272 0.206 0.246 0.338 0.222 0.238 
 

8.8 Appendix I - TCP Latency 

Table 12: The results of TCP latency testing against each service in milliseconds. 

rdppot winxp AHA win10 octopus xrdp 

2.92 0.3 0.7 0.6 0.23 0.44 

0.32 0.32 0.81 0.43 0.49 0.37 

0.33 0.28 0.63 0.4 0.36 0.4 

0.34 0.28 1.03 0.45 0.32 0.45 

0.43 0.27 0.73 0.64 0.33 2.26 

0.33 0.28 0.85 0.42 0.3 0.31 

0.39 0.29 0.71 0.41 0.32 0.38 

0.34 0.26 1.75 0.39 0.29 0.36 

0.36 0.3 0.88 0.42 0.28 0.33 

0.31 0.31 0.78 0.44 0.3 0.4 

0.33 0.34 0.78 0.39 0.26 0.33 

0.31 0.33 0.71 0.44 0.26 0.33 

0.32 0.28 0.64 0.46 0.28 2.27 

0.34 0.28 0.84 0.38 0.43 0.33 

0.35 0.28 0.71 0.51 0.28 0.31 

0.34 0.31 0.62 0.46 0.24 0.4 

0.34 0.28 0.68 0.42 0.29 0.35 

0.38 0.25 0.72 0.52 0.27 0.42 

0.34 0.25 0.92 0.44 0.25 0.42 

0.3 0.26 0.8 0.46 0.37 0.52 

0.56 0.26 0.75 0.47 0.31 2.29 

0.44 0.28 0.84 0.44 0.24 0.3 

0.35 0.28 0.74 0.49 0.25 0.42 

0.33 0.35 0.72 0.45 0.29 0.31 

0.41 0.28 0.66 0.37 0.29 0.34 

0.41 0.3 0.62 0.39 0.26 0.33 

0.33 0.31 0.71 0.44 0.27 0.53 

0.46 0.41 0.78 0.44 0.25 0.41 

0.37 0.38 0.74 0.45 0.28 0.33 

0.39 0.26 0.57 0.39 0.27 0.29 

0.39 0.38 0.77 0.36 0.26 0.31 

0.35 0.42 0.7 0.46 0.31 0.36 
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0.39 0.32 0.99 0.66 0.29 0.28 

0.47 0.48 0.75 0.94 0.36 0.36 

0.37 0.25 0.71 0.93 0.29 0.29 

0.36 0.3 0.77 0.37 0.31 0.29 

0.4 0.34 0.63 0.46 0.51 3.02 

0.46 0.28 0.73 0.38 0.25 0.29 

0.35 0.28 0.75 0.42 0.26 0.32 

0.37 0.3 0.67 0.4 0.27 0.34 

0.38 0.35 0.65 0.36 0.63 0.33 

0.36 0.25 0.67 0.36 0.23 0.27 

0.45 0.3 0.71 0.36 0.28 0.26 

0.34 0.31 0.77 0.35 0.21 0.31 

0.42 0.26 0.68 0.39 0.23 0.3 

0.37 0.34 0.85 0.4 0.22 0.44 

0.36 0.3 0.73 0.5 0.24 0.37 

0.33 0.26 0.74 0.38 0.27 0.31 

0.36 0.32 0.76 0.38 0.26 0.31 

0.38 0.3 0.8 0.37 0.26 0.38 

0.43 0.32 0.69 0.38 0.25 0.28 

0.45 0.25 0.72 0.39 0.35 0.31 

0.36 0.31 0.72 0.38 0.21 0.64 

0.34 0.42 0.71 0.39 0.23 0.5 

0.38 0.28 0.7 0.44 0.26 0.3 

0.34 0.36 1.4 0.39 0.26 0.33 

0.36 0.28 0.75 0.43 0.23 0.3 

0.33 0.32 0.81 0.43 0.24 0.38 

0.35 0.32 0.65 0.4 0.24 0.3 

0.34 0.3 0.68 0.45 0.39 0.3 

0.33 0.29 0.65 0.46 0.27 0.3 

0.41 0.29 0.74 0.5 0.22 0.29 

0.34 0.32 0.7 0.47 0.24 0.3 

0.31 0.3 0.59 0.5 0.34 0.37 

0.36 0.29 0.8 0.45 0.28 0.35 

0.34 0.33 0.81 0.47 0.34 0.36 

0.37 0.32 0.78 0.42 0.4 0.37 

0.35 0.28 0.68 0.4 0.25 0.53 

0.6 0.33 0.8 0.4 0.23 0.35 

0.33 0.28 0.7 0.39 0.24 0.36 

0.42 0.29 0.78 0.41 0.23 0.32 

0.41 0.37 0.75 0.36 0.23 0.33 

0.79 0.41 0.78 0.45 0.26 0.41 
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0.34 0.27 0.68 0.46 0.23 0.4 

0.37 0.4 0.71 0.4 0.25 0.32 

0.37 0.3 0.65 0.42 0.23 0.37 

0.33 0.26 0.89 0.4 0.23 0.35 

0.33 0.32 0.66 0.47 0.26 0.33 

0.36 0.36 0.63 0.37 0.29 0.3 

0.37 0.3 0.72 0.44 0.37 0.86 

0.33 0.37 0.68 0.5 0.3 0.38 

0.34 0.25 0.73 0.4 0.39 0.34 

0.36 0.3 0.67 0.45 0.58 0.33 

0.39 0.29 0.76 0.44 0.36 2.36 

0.39 0.29 2.3 0.52 0.38 0.39 

0.39 0.28 0.59 0.38 0.36 0.43 

0.35 0.39 0.64 0.43 0.32 0.35 

0.36 0.35 0.71 0.49 0.26 0.4 

0.35 0.55 0.72 0.69 0.27 0.36 

0.37 0.32 0.76 0.4 0.38 0.73 

0.34 0.31 0.67 0.45 0.23 0.33 

0.32 0.44 0.76 0.48 0.33 0.41 

0.29 0.31 0.78 0.48 0.33 0.41 

0.38 0.3 0.71 0.41 0.46 0.39 

0.34 0.35 0.56 0.4 0.34 0.38 

0.4 0.31 0.7 0.41 0.35 0.32 

0.33 0.34 0.81 0.41 0.25 0.34 

0.39 0.51 0.76 0.4 0.27 0.42 

0.39 0.36 0.69 0.43 0.26 0.41 

0.35 0.28 0.65 0.56 0.25 0.47 
 

8.9 Appendix J - File Persistence Results 
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8.9.1 Rdppot 

 
Figure 72: Creating the file on rdppot to test for file persistence. 

 
Figure 73: The file no longer being found after reconnecting. 
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8.9.2 Octopus 

 
Figure 74: Creating the file on Octopus to test for file persistence. 

 
Figure 75: The file is still present after reconnecting. 
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8.9.3 AHA 

 
Figure 76: Creating the file on AHA to test for file persistence. 

 
Figure 77: The file is still present after reconnecting. 
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8.10 Appendix K - Further Attack Results 

8.10.1 Rdppot 

 
Figure 78: Result of attempting a further attack from the rdppot honeypot, successfully accessing another machine via FTP. 
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8.10.2 Octopus 

 
Figure 79: Result of attempting a further attack from the Octopus honeypot, successfully accessing another machine via 

SSH. 

 

8.10.3 AHA 
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Figure 80: Result of attempting a further attack from the AHA honeypot, successfully accessing another machine via SSH. 
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