<u>CMP416 Assessment 2 - A Case of Bribery - Christopher Di-Nozzi, 1800317</u>

Table of Contents

Investigation of Capture1.pcap	2
Investigation of Capture2.pcap	5
Investigation of Capture3.pcap	8
Investigation of Capture4.pcap	
Bibliography	
Appendix A	
Appendix B	16
Appendix C	
Appendix D	
Appendix E	
Appendix F	

Investigation of Capture1.pcap

This investigation began by conducting statistical flow analysis against the provided data. The file was first prepared for analysis following the steps outlined in Appendix A. Once prepared, the file was analysed using the 'rwstats' command, as part of the SiLK suite of network analyses tools, to examine the top 20 flows and display the source IP and port along with the destination IP and port. The following command was run to do this:

rwstats capture1.rw --fields=1,2,3,4 --values=packets --count 20

Fields 1,2,3, and 4 specified the inclusion of the source IP (sIP), destination IP (dIP), source port (sPort), and destination port (dPort). The value 'packets' sums all the packets across all records mapped to each bin. The output of this command can be seen in Figure 1

<u> </u>		
chris@apple-crate capture 1 % rwstats capture1.rwfie		
INPUT: 1380 Records for 1358 Bins and 30336 Total Packe	ts	
OUTPUT: Top 20 Bins by Packets		
sIP		ckets %Packets cumul_%
172.29.1.23	64.12.132.55 50180 80	6593 21.733254 21.733254
64.12.132.55	172.29.1.23 80 50180	3547 11.692379 33.425633
172.29.1.23	172.29.1.20 50291 445	1336 4.404008 37.829641
172.29.1.20	172.29.1.23 445 50291	942 3.105222 40.934863
173.194.79.103	172.29.1.20 443 1784	460 1.516350 42.451213
172.29.1.20	173.194.79.103 1784 443	308 1.015295 43.466508
93.184.215.248	172.29.1.20 80 1631	224 0.738397 44.204905
93.184.215.248	172.29.1.20 80 1633	224 0.738397 44.943302
93.184.215.248	172.29.1.20 80 1696	224 0.738397 45.681698
93.184.215.248	172.29.1.20 80 1787	224 0.738397 46.420095
93.184.215.248	172.29.1.20 80 1626	224 0.738397 47.158492
93.184.215.248	172.29.1.20 80 1668	224 0.738397 47.896888
93.184.215.248	172.29.1.20 80 1692	223 0.735100 48.631988
93.184.215.248	172.29.1.20 80 1700	223 0.735100 49.367089
93.184.215.248	172.29.1.20 80 1764	223 0.735100 50.102189
93.184.215.248	172.29.1.20 80 1630	223 0.735100 50.837289
93.184.215.248	172.29.1.20 80 1628	223 0.735100 51.572389
93.184.215.248	172.29.1.20 80 1701	223 0.735100 52.307489
184.28.16.25	172.29.1.20 80 1769	216 0.712025 53.019515
172.29.1.20	205.188.16.197 1315 80	204 0.672468 53.691983

Figure 1: rwstats output of capture1.rw displaying the source port and IP along side the destination IP and port of the top 20 flows.

All the standard protocols seen (80/HTTP,445/SMB,443/HTTPS) could have been used for file transfers. HTTP and HTTPS could be used to download files from a web server, while SMB could have been used to transfer files from a network share. The first two flows (23->55 and 55->23) were examined but no traces of file transfers were found. Traffic related to AOL emails were found, and a zip file was uncovered which contained another .pcap file, but this was decided to be unrelated to the investigation at hand since it did not help to fulfil the given brief.

Analysing the SMB traffic provided significantly more interesting results. SMB is a remote file access protocol commonly used on Windows, (Wireshark, 2020). Therefore, it could be used to download files from one system to another.

The following query was used in Wireshark to filter the traffic between 172.29.1.23 and .20:

((ip.src==172.29.1.23 && ip.dst==172.29.1.20)|/(ip.dst==172.29.1.23 && ip.src==172.29.1.20)) && smb

This query filtered all traffic that was from .23 towards .20, or vice versa. The '.src' and '.dst' parts were used to provide clarity to the reader. The "&& smb" keyword at the end caused only the SMB traffic to be displayed, rather than all the other associated TCP packets. This reduced the amount of noise displayed to the analyst and made finding key information easier. Analysing these packets showed there had been file transfers between the two network devices. A snippet of this traffic can be seen in Figure 2.

5898 243.765960	172.29.1.23	50191 172.29.1.20	139 SMB	213 Negotiate Protocol Request
5899 243.766459	172.29.1.20	139 172.29.1.23	50191 SMB	143 Negotiate Protocol Response
5900 243.934327	172.29.1.23	50191 172.29.1.20	139 SMB	162 Session Setup AndX Request, NTLMSSP_NEGOTIATE
5901 243.934826	172.29.1.20	139 172.29.1.23	50191 SMB	319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
5903 244.118929	172.29.1.23	50191 172.29.1.20	139 SMB	238 Session Setup AndX Request, NTLMSSP_AUTH, User: \
5904 244.119929	172.29.1.20	139 172.29.1.23	50191 SMB	175 Session Setup AndX Response
5906 244.275556	172.29.1.23	50191 172.29.1.20	139 SMB	136 Tree Connect AndX Request, Path: \\DOG-WS\IPC\$
5907 244.275811	172.29.1.20	139 172.29.1.23	50191 SMB	114 Tree Connect AndX Response
5908 244.336758	172.29.1.23	50191 172.29.1.20	139 LAN	172 NetServerEnum2 Request, Domain Enum
5909 244.337256	172.29.1.20	139 172.29.1.23	50191 LAN	138 NetServerEnum2 Response
5910 244.340753	172.29.1.23	50191 172.29.1.20	139 LAN	186 NetServerEnum2 Request, Workstation, Server, SQL Server, Domain Controll
5911 244.341003	172.29.1.20	139 172.29.1.23	50191 LAN	193 NetServerEnum2 Response
5949 257.521807	172.29.1.23	50191 172.29.1.20	139 SMB	93 Tree Disconnect Request
5950 257.522055	172.29.1.20	139 172.29.1.23	50191 SMB	93 Tree Disconnect Response
5951 257.594995	172.29.1.23	50191 172.29.1.20	139 SMB	97 Logoff AndX Request
5952 257.595003	172.29.1.20	139 172.29.1.23	50191 SMB	97 Logoff AndX Response
6096 264.752321	172.29.1.23	50193 172.29.1.20	139 SMB	213 Negotiate Protocol Request
6097 264.752570	172.29.1.20	139 172.29.1.23	50193 SMB	143 Negotiate Protocol Response
6098 264.877972	172.29.1.23	50193 172.29.1.20	139 SMB	162 Session Setup AndX Request, NTLMSSP_NEGOTIATE
6099 264.878221	172.29.1.20	139 172.29.1.23	50193 SMB	319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
6100 265.009369	172.29.1.23	50193 172.29.1.20	139 SMB	238 Session Setup AndX Request, NTLMSSP_AUTH, User: \
6101 265.010366	172.29.1.20	139 172.29.1.23	50193 SMB	175 Session Setup AndX Response
6104 265.225195	172.29.1.23	50193 172.29.1.20	139 SMB	136 Tree Connect AndX Request, Path: \\DOG-WS\IPC\$
6105 265.225451	172.29.1.20	139 172.29.1.23	50193 SMB	114 Tree Connect AndX Response
6106 265.298389	172.29.1.23	50193 172.29.1.20	139 LAN	176 NetServerEnum2 Request, Workstation, Server, SQL Server, Domain Controll
6107 265.298638	172.29.1.20	139 172.29.1.23	50193 LAN	193 NetServerEnum2 Response
6108 265.299387	172.29.1.23	50193 172.29.1.20	139 LAN	176 NetServerEnum2 Request, Domain Enum
6109 265.299639	172.29.1.20	139 172.29.1.23	50193 LAN	155 NetServerEnum2 Response
6373 275.542514	172.29.1.23	50193 172.29.1.20	139 SMB	93 Tree Disconnect Request
6374 275.542769	172.29.1.20	139 172.29.1.23	50193 SMB	93 Tree Disconnect Response
6403 275.579734	172.29.1.23	50193 172.29.1.20	139 SMB	97 Logoff AndX Request
6404 275.579741	172.29.1.20	139 172.29.1.23	50193 SMB	97 Logoff AndX Response
23838 641.752417	172.29.1.23	50291 172.29.1.20	445 SMB	213 Negotiate Protocol Request
23839 641.752917	172.29.1.20	445 172.29.1.23	50291 SMB	143 Negotiate Protocol Response
23841 641.878067	172.29.1.23	50291 172.29.1.20	445 SMB	162 Session Setup AndX Request, NTLMSSP_NEGOTIATE
23842 641.878569	172.29.1.20	445 172.29.1.23	50291 SMB	319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
23844 642.004966	172.29.1.23	50291 172.29.1.20	445 SMB	504 Session Setup AndX Request, NTLMSSP_AUTH, User: fox-ws\test
23845 642.006724	172.29.1.20	445 172.29.1.23	50291 SMB	175 Session Setup AndX Response
23848 642.075412	172.29.1.23	50291 172.29.1.20	445 SMB	<pre>136 Tree Connect AndX Request, Path: \\DOG-WS\IPC\$</pre>
23849 642.075666	172.29.1.20	445 172.29.1.23	50291 SMB	114 Tree Connect AndX Response
23850 642.131618	172.29.1.23	50291 172.29.1.20	445 SMB	158 NT Create AndX Request, FID: 0x4000, Path: \srvsvc
23851 642.131867	172.29.1.20	445 172.29.1.23	50291 SMB	193 NT Create AndX Response, FID: 0x4000
23852 642.132369	172.29.1.23	50291 172.29.1.20	445 SMB	130 Trans2 Request, QUERY_FILE_INFO, FID: 0x4000, Query File Standard Info
23853 642.132380	172.29.1.20	445 172.29.1.23	50291 SMB	142 Trans2 Response, FID: 0x4000, QUERY_FILE_INF0
23854 642.204561	172.29.1.23	50291 172.29.1.20	445 DCE	238 Bind: call_id: 2, Fragment: Single, 2 context items: SRVSVC V3.0 (32bit
23855 642.204808	172.29.1.20	445 172.29.1.23	50291 SMB	105 Write AndX Response, FID: 0x4000, 116 bytes

Figure 2: A section of the SMB traffic analysed.

In Wireshark, by selecting File -> Export Objects -> SMB, a list of files transferred over SMB could be seen. In this list of 9 files seen in Figure 3. Of these files, only 1 was successfully downloaded, packet 24186, writing the file "Documents.zip" to the user's device.

Packet	∧ Hostname	Content Type	Size	Filename
23854	\\DOG-WS\IPC\$	PIPE (Not Implemented) (0/0) W [0.00%]	0 bytes	\srvsvc
23902	\\DOG-WS\DOCUMENTS	FILE (129/129) R [100.00%]	129 bytes	\desktop.ini
23924	\\DOG-WS\DOCUMENTS	FILE (151/151) R [100.00%]	151 bytes	\My Music\desktop.ini
23932	\\DOG-WS\DOCUMENTS	FILE (150/150) R [100.00%]	150 bytes	\My Pictures\desktop.ini
23940	\\DOG-WS\DOCUMENTS	FILE (151/151) R [100.00%]	151 bytes	\My Videos\desktop.ini
24021	\\DOG-WS\DOCUMENTS	FILE (42/42) R [100.00%]	42 bytes	\My Pictures\Sample Pictures\desktop.ini
24186	\\DOG-WS\BLAH	FILE (1324022/1324022) W [100.00%]	1324 kB	\Documents.zip
25755	\\DOG-WS\BLAH	FILE (1014/1324022) R [0.00%]	1324 kB	\DOCUME~1.ZIP
25785	\\DOG-WS\BLAH	FILE (5110/1324022) R [0.00%]	1324 kB	\DOCUME~1.ZIP

Figure 3: Files transferred via SMB in Capture 1.

This transaction was confirmed to be between .23 and .20 by locating it within the above-mentioned Wireshark filter. The file could be extracted from the capture by selecting it from the form above and clicking save. Once saved, the zip could be extracted, and several files were revealed. The zip contained the following directories (d), sub-directories (sd) and files (f):

Documents (d)

- Actual Documents (sd)
 - GoT Spoilers.docx (f)
 - NotherKorea.docx (f)
 - PiD.docx (f)
- Chess Boxing (sd)
 - NK.jpg (f)
 - Rules 1..docx (f)
 - \circ Rules 2.docx (f)

- o Rules 3.docx (f)
- Rules 4.docx (f)
- Rules 5.docx (f)
- Rules 6.docx (f)
- \circ Rules 2.docx (f)
- Enter the WuTang(sd)
 - o track6.docx (f)
 - o track10.docx (f)
- More Documents(sd)
 - BillOfRights.txt (f)
 - NorthKorea.jpeg (f)

There was another zip file found within named "untitled.zip" which contained 5 other empty folders nested in each other. The final directory was named "SilentEye", the same name as a steganography tool. Using this hint, a python file was discovered within NorthKorean.jpeg but posed no use to the questions of this investigation. All the above files were analysed. The contents of each .docx file was encoded using Base64. The file of most interest to this investigation was "track6.docx" found within "Enter the WuTang". After decoding this file, a list of usernames was discovered. This list could potentially be a list of actors involved in the bribery case. The full list can be found in Appendix B. A list of only the names has been provided below.

- Mr. Method
- Kim Ill-Song
- Mr. Razor
- Mr. Genius
- Mr. G. Killah
- Matt Cassel
- Mr. I. Deck
- Mr. M Killa
- Mr. O.D.B.
- Mr. Raekwon
- Mr. U-God
- Mr. Cappadonna (possibly)
- John Woo?
- Mr. Nas

This analysis has shown the "Documents.zip" was transferred from 172.29.1.20 to 172.29.1.23. The recovery and decoding method have been outlined and the most likely contender for aliases of actors within the corruption case have been retrieved.

Investigation of Capture2.pcap

The brief for this capture mentioned IRC traffic, therefore, this was used as a starting point for analysis. IRC traffic could be filtered in Wireshark by simply filtering the keyword "IRC". This could be filtered further to display only the requests that included private messages using the filter "irc.request.command==PRIVMSG". There was IRC traffic from two different internal address, 172.29.1.17 and 172.29.1.21, however, packet number 22 from .17 contained the full conversation transaction and was therefore used for further analyses. Packet 22 could be right clicked and Follow -> TCP Protocol could be selected to view the entire flow. To automate the extraction of the messages, the tshark¹ tool was used with the following command line: ./tshark -r capture2.pcap -Y "(irc.request.command==PRIVMSG || irc.response.command==PRIVMSG) && (ip.addr ==172.29.1.17)" -T fields -e "irc.request" - e "irc.response"

The above command invoked tshark against the capture2.pcap file provided for analysis. The capture was filtered from all IRC requests and responses that included the PRIVMSG command, and that were sent from or to the .17 IP address. These requests then had the request and response sections extracted from them. An example of a request section from Wireshark can be seen in Figure 4, highlighted in red.

Figure 4: An example of the request portion of the IRC packet, containing an encoded PRIVMSG.

The contents of the above command line were outputted into a text file. Once extracted, the conversation appeared to be encoded. Messages from Ill Song were decoded first from Base64 and then Base32. Messages from Razor were first decoded from Base64 and then Hex. Messages from Genius were decoded using Base64 and then Octal. One message from Genius contained an MD5 hash that was cracked separately using crackstation². This can be seen in the below figure.

Free Password	Hash	Cracker
---------------	------	---------

Enter up to 20 non-salted hashes, one per line:			
c9fa5b8cb3b197ae5ce4baf8415a375b			
	l'm no	t a robot	reCAPTCHA Privacy - Terms
		Crack Hashes	5
Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, sha1, sha224, sha256, sha384, sha512, ripeMD160, v QubesV3.1BackupDefaults	whirlpool, My	/SQL 4.1+ (sha1(s	ha1_bin)),
Hash		Туре	Result
c9fa5b8cb3b197ae5ce4baf8415a375b		md5	Caracas

Figure 5: Cracked hash found within the IRC conversation between Ill Song and Genius.

¹ https://www.Wireshark.org/docs/man-pages/tshark.html

² https://crackstation.net/

Messages from Method were decoded via Base64 and then Hex. The second message sent to Method was unusually decoded. After being decoded from Base64, the first half ("SSBhbSBqdXN0IGhvcGVmdWwuIEl0IHdvdWxkIG1lYW4gc28gbXVjaCB0byBoYXZlIHR") of the messages could again be Base64 decoded into an incomplete message: "I am just hopeful. It would mean so much to have t". The second half of the original message could be Base32 decoded to show the whole message: "I am just hopeful. It would mean so much to have the Title here. Please consider it.". It's unclear whether this was a technical issue or a obfuscation tactic.

Messages from Killah were decoded using Base64 and then Octal decoding. Finally, messages from Raekwon were decoded using Base64 and then Hex. All decoding was done using CyberChef³. The table below lays out the various general techniques used by each actor to encode their own messages.

Technique	Actor
Base32 -> Base64	Ill Song
Hex -> Base64	Razor, Raekwon, Method

Genius, Killah

Table 1: The general technique used by each actor to encode their IRC messages.

The fully decoded conversation can be found in **Appendix C**. From the conversations, claims can be made about the location and innocence of all parties to some extent. This information has been condensed into a table for easy comprehension.

Octal -> Base64

Actor	Country	Status
Razor	Paris, France	Guilty
Genius	Likely Caracas,	Likely Guilty
	Venezuela	
Method	Unknown	Innocent
Killah	Qatar	Innocent
Raekwon	Russia	Guilty

Table 2: The Country and Conviction of each actor involved in the IRC conversations.

Razor was assumed to be in Paris due to the mention of "The City of Love" by Ill Song. Razor also accepted a bribe of \$700,000 after a short period negotiation.

Genius is assumed to be in Caracas due to its mention as a meeting point in their conversation, however, it could be the case that this was simply a meeting point and not their own country. From the conversation analysed, it's unclear whether Genius is guilty as no bribe is explicitly accepted, however, due to their intention to "see the validity of this claim" it could be assumed there is intention to accept a bribe if presented. Method's location could not be pinpointed using the conversation, but made it clear they had no intention of speaking to Ill Song and took no bribe.

Killah is most likely located in Qatar since Ill Song asks about the weather there, and Killah answers "Hot, as always.", implying they have been there a while. Killah is seemingly not guilty of bribery, stating to Ill Song "We do not take kindly to this pathetic notion of bribery."

Finally, Raekwon appears to be based in Russia due to the discussion of a payment being made in Rubles, the currency used in Russia. Raekwon demands a bribe of 20

³ https://gchq.github.io/CyberChef/

million Rubles and is told by Ill Song that it will be delivered. Thus, Raekwon is also guilty of bribery.

Investigation of Capture3.pcap

The brief for this capture highlighted FTP traffic, therefore, this is where the investigation began. FTP, or File Transfer Protocol, is used to transfer files, usually from a dedicated file storage server to a client but can also be used between two clients who host the server themselves.

To filter for FTP in Wireshark, FTP can simply be entered in the filter bar. This displayed FTP traffic between 172.29.1.21 and 172.29.1.23. .23 appeared to be the server, nicknamed "Super Secret Server", as can be seen in its initial response to the request from .21 (1). The user then logged in with the username and password "Ill_Song" (2) and proceeded to change into the "/home/Ill_Song" directory (3). Then the "sandofwhich.zip" (4) and "ojd34.zip" (5) files were transferred successfully from the server to the client. All the above cations can be seen in Figure 6.

	ftp								
No		Time	Source	Src Port	Destination	Dst Port	Proto	Lengtr	Info
		179.750171	172.29.1.21		172.29.1.23	51461	FTP		Response: 220 Super Secret Server
		179.750921	172.29.1.21	21	172.29.1.23	51462			Response: 220 Super Secret Server
11	5854	179.767158	172.29.1.23		172.29.1.21		FTP		Request: USER Ill_Song
11		179.767169	172.29.1.21	21	172.29.1.23	51461			Response: 331 Please specify the password.
		179.767408	172.29.1.23		172.29.1.21		FTP		Request: USER Ill_Song
		179.767420	172.29.1.21		172.29.1.23	51462			Response: 331 Please specify the password. 🚄
		179.767658	172.29.1.23		172.29.1.21		FTP		Request: PASS Ill_Song
		179.767666	172.29.1.23		172.29.1.21		FTP		Request: PASS Ill_Song
		179.887813	172.29.1.21		172.29.1.23	51461			Response: 230 Login successful.
		179.888312	172.29.1.23		172.29.1.21		FTP		Request: OPTS UTF8 ON
		179.888324	172.29.1.21		172.29.1.23	51461			Response: 200 Always in UTF8 mode.
		179.888811	172.29.1.21		172.29.1.23	51462			Response: 230 Login successful.
		179.903300	172.29.1.23		172.29.1.21		FTP		Request: CWD /home/Ill_Song
		179.903550	172.29.1.21		172.29.1.23	51461			Response: 250 Directory successfully changed
		180.012463 180.012713	172.29.1.23 172.29.1.21		172.29.1.21	51462	FTP		Request: OPTS UTF8 ON Response: 200 Always in UTF8 mode.
		180.012713	172.29.1.21		172.29.1.23		FTP		Request: CWD /home/Ill_Song
		180.027451	172.29.1.21		172.29.1.23	51462			Response: 250 Directory successfully changed.
Li I		181.850756	172.29.1.23		172.29.1.21		FTP		Request: TYPE I
		181.850766	172.29.1.21		172.29.1.23	51461			Response: 200 Switching to Binary mode.
		181.949429	172.29.1.23		172.29.1.21		FTP		Request: PASV
		181.949927	172.29.1.21		172.29.1.23	51461			Response: 227 Entering Passive Mode (172,29,1,21,216,252).
		181.959170	172.29.1.23		172.29.1.21		FTP		Request: RETR sandofwhich.zip
		182.022369	172.29.1.21		172.29.1.23	51461			Response: 150 Opening BINARY mode data connection for sandofwhich.zip (24792 bytes).
		182.025117	172.29.1.21		172.29.1.23	51461			Response: 226 Transfer complete.
		183.034570	172.29.1.23		172.29.1.21		FTP		Request: TYPE I
		183.034817	172.29.1.21		172.29.1.23	51462			Response: 200 Switching to Binary mode.
		183.061296	172.29.1.23		172.29.1.21		FTP		Request: PASV
	5931	183.061545	172.29.1.21		172.29.1.23	51462	FTP		Response: 227 Entering Passive Mode (172,29,1,21,121,89).
		183.071288	172.29.1.23		172.29.1.21		FTP		Request: RETR ojd34.zip
	5937	183.175963	172.29.1.21	21	172.29.1.23	51462	FTP	124	Response: 150 Opening BINARY mode data connection for ojd34.zip (24714 bytes).
	5965	183.178702	172.29.1.21	21	172.29.1.23	51462	FTP	78	Response: 226 Transfer complete.
	5969	183.203432	172.29.1.23	51462	172.29.1.21	21	FTP		Pequest: PASV
		183.203933	172.29.1.21	21	172.29.1.23	51462		104	Response: 227 Entering Passive Mode (172,29,1,21,207,194).
	5972	183.273128	172.29.1.23	51462	172.29.1.21		FTP		Request: LIST
	5982	183.341823	172.29.1.21		172.29.1.23	51462	FTP		Response: 150 Here comes the directory listing.
		183.342076	172.29.1.21	21	172.29.1.23	51462			Response: 226 Directory send OK.
		242.045773	172.29.1.21		172.29.1.23	51461			Response: 500 OOPS:
		242.045776	172.29.1.21		172.29.1.23	51461			Response: vsf_sysutil_recv_peek: no data
		242.045780	172.29.1.21		172.29.1.23	51461			Response:
		243.186122	172.29.1.21		172.29.1.23	51462			Response: 500 OOPS:
		243.186125	172.29.1.21		172.29.1.23	51462			Response: vsf_sysutil_recv_peek: no data
	7886	243.186129	172.29.1.21	21	172.29.1.23	51462	FTP	60	Response:

Figure 6: Annotated copy of the ftp traffic found in capture 3

To extract these two zip files, the analyst changed the filter from "ftp" to "ftp || ftp-data", filtering to both ftp and ftp-data traffic. Ftp-data represents the data transported over port 20, rather than the port 21 most associated with FTP. Port 20 sends data, while port 21 handles the control. Once the filter was changed, the files could be extracted from their ftp-data streams. The two ftp-data streams containing the files can be seen in Figure 7 (sandofwhich.zip) and Figure 8 (ojd34.zip).

				cinzip junu i	igui e o	
	5885	181.959170	172.29.1.23	51461 172.29.1.21	21 FTP	76 Request: RETR sandofwhich.zip
	5891	182.022369	172.29.1.21	21 172.29.1.23	51461 FTP	130 Response: 150 Opening BINARY mode data connection for sandofwhich.zip (24792 bytes).
	5892	182.022621	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5893	182.022634	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
- 1	5894	182.022870	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
1	5896	182.022886	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5897	182.023121	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5898	182.023134	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5899	182.023369	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5900	182.023381	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5901	182.023619	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5902	182.023630	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5903	182.023870	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5904	182.023881	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5910	182.024370	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5911	182.024619	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5912	182.024631	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
- 1	5913	182.024869	172.29.1.21	55548 172.29.1.23	51463 FTP	1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
	5914	182.024880	172.29.1.21	55548 172.29.1.23	51463 FTP	1486 FTP Data: 1432 bytes (PASV) (RETR sandofwhich.zip)
	5919	182.025117	172.29.1.21	21 172.29.1.23	51461 FTP	78 Response: 226 Transfer complete.

Figure 7: The ftp-data stream transferring sandofwhich.zip

5932	183.071288	172.29.1.23	51462	172.29.1.21	21	FTP	70 Request: RETR ojd34.zip	
5937	183.175963	172.29.1.21	21	172.29.1.23	51462	FTP	124 Response: 150 Opening BINARY mode data connection for ojd34.zip (24714 bytes).
5938	183.176206	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)	
5939	183.176219	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)	
5940	183.176455	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)	
5942	183.176473	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)	
5943	183.176705	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR oid34.zip)	
5944	183,176717	172.29.1.21	31065	172.29.1.23	51464	FTP	1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)	
5945	183,176955	172.29.1.21	31065	172.29.1.23	51464	FTP		
5946	183,176967	172,29,1,21		172.29.1.23	51464			
	183,177210	172.29.1.21		172.29.1.23	51464			
	183.177221	172.29.1.21		172.29.1.23	51464			
	183,177459	172.29.1.21		172.29.1.23	51464			
	183,177471	172.29.1.21		172.29.1.23	51464			
	183.177956	172.29.1.21		172.29.1.23	51464			
	183.178204	172.29.1.21		172.29.1.23	51464			
	183.178216	172.29.1.21		172.29.1.23	51464			
	183.178454	172.29.1.21		172.29.1.23	51464			
	183.178467	172.29.1.21		172.29.1.23	51464			
5965	183.178702	172.29.1.21	21	172.29.1.23	51462	FIP	78 Response: 226 Transfer complete.	
				Figuro 8.	The ftn-	data	a stream transferring oid 3.4 zin	

Figure 8: The ftp-data stream transferring ojd34.zip

The files could then be extracted by right clicking on one of the data packets and selecting Follow -> TCP Stream. Then the "Show data as" format was changed to Raw and each file was saved under its respective name, "sandofwhich.zip" and "ojd34.zip". Once extracted, both zips could be opened to reveal their contents. They each contained one folder full of .jpg file that could not be opened, except for "sandofwhich/I.jpg" which displayed nothing useful, as can be seen below.

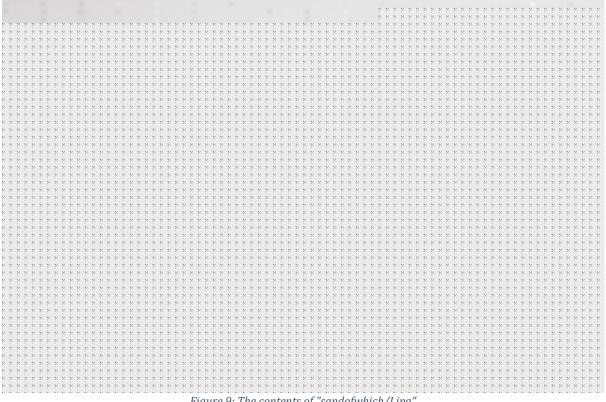


Figure 9: The contents of "sandofwhich/Lipg"

It appeared to be an incomplete image. All the files were named seemingly random words. At this stage, the hypothesis was that if a certain phrase was created with all the words, they could be combined into one image, however, there were not enough files between the two folders to create an Edward Snowden quote, as hinted too in the brief. Therefore, statistical flow analysis was employed to find more files. Following the steps laid out in Appendix A, the file was prepared for analysis. The 'rwstats' command was then used to examine the top 20 flows in the traffic. The command and output can be seen in the figure below.

chris@apple-crate capture3 % rwstats capture3.rwfie	elds=1,2,3,4values=packetscount 20		
INPUT: 2383 Records for 2356 Bins and 19021 Total Pack	kets .		
OUTPUT: Top 20 Bins by Packets			
sIP	dIP sPort dPort	Packets	%Packets cumul_%
74.125.239.148	172.29.1.21 443 40263	1032	5.425582 5.425582
172.29.1.21	74.125.239.148 40263 443	891	4.684296 10.109879
192.0.72.2	172.29.1.23 80 51515	415	2.181799 12.291678
74.125.129.147	172.29.1.23 443 51442	276	1.451028 13.742705
172.29.1.23	192.0.72.2 51515 80	257	1.351138 15.093844
192.0.72.2	172.29.1.23 80 51513	229	1.203932 16.297776
74.125.224.70	172.29.1.21 80 52374	218	1.146102 17.443878
192.0.72.2	172.29.1.23 80 51511	215	1.130330 18.574207
192.0.72.2	172.29.1.23 80/51510/	195	1.025183 19.599390
172.29.1.21	64.12.132.39 48055 80	186	0.977867 20.577257
172.29.1.21	74.125.224.70[52374] 80]	180	0.946322 21.523579
172.29.1.23	74.125.129.147 51442 443	173	0.909521 22.433100
192.0.72.2	172.29.1.23 80 51514	164	0.862205 23.295305
184.28.16.43	172.29.1.23 80 51570	155	0.814889 24.110194
172.29.1.23	192.0.72.2 51511 80	148	0.778087 24.888281
172.29.1.23	184.28.16.43 51570 80	145	0.762315 25.650597
172.29.1.23	192.0.72.2 51513 80	144	0.757058 26.407655
192.0.72.2	172.29.1.23 443 51517	143	0.751801 27.159455
74.125.129.147	172.29.1.21 443 44698	137	0.720257 27.879712
172.29.1.23	192.0.72.2 51510 80	136	0.714999 28.594711

Figure 10: rwstats command and output run against capture 3 as part of statistical flow analysis.

Each flow was analysed in Wireshark for any interesting traffic. The traffic between 172.29.1.21 and 64.12.132.39 proved most interesting. Performing a "whois" lookup against the 64.12.132.39 address revealed it was part of the ARIN CIDR block 64.12.0.0/16 owned by AOL, as can be seen in Figure 11.

y 110 L, us (can be been in Figure 11.
	rate capture3 % whois 64.12.132.39
% IANA WHOIS 9	
	formation on IANA, visit http://www.iana.org
% This query	returned 1 object
refer:	whois.arin.net
inetnum:	64.0.0.0 - 64.255.255.255
organisation:	ARIN
status:	ALLOCATED
whois:	whois.arin.net
changed:	1999-07
	IANA
# whois.arin.	net
NetRange:	64.12.0.0 - 64.12.255.255
CIDR:	64.12.0.0/16
	AOL-MTC
	NET-64-12-0-0-1
	NET64 (NET-64-0-0-0-0)
NetType:	Direct Allocation
OriginAS:	Direct Actocación
	Oath Holdings Inc. (OH-207)
	1999–12–13
	2019-03-22
Updated:	
Ref:	<pre>https://rdap.arin.net/registry/ip/64.12.0.0</pre>

Figure 11: Results of a whois lookup against the external IP 64.12.132.39

The traffic between the two devices appeared to be around AOLs email service. Two post requests were found that involved sending messages. These could be filtered in Wireshark using the following query:

((ip.dst==172.29.1.21 && ip.src==64.12.132.39) ||(ip.src==172.29.1.21 && ip.dst==64.12.132.39)) && http.request.method==POST && http.request.uri contains "SendMessage"

When sending an email via AOL, a "SendMessage" POST request is used. The above filter showed the traffic between the two Ips and then filtered again for POST requests and finally for POST requests containing "SendMessage". Both the packets found (2666 and 8190) contained zip files that could be extracted. These can be seen in Figure 12 and Figure 13.

MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "	506390528859906812396841278"
[Type: multipart/form-data]	
First boundary:506390528859906812396841278\r\n	
 Encapsulated multipart part: (application/zip) 	
Content-Disposition: form-data; name="file0"; filename="34jdsioj.zip"\r\n	
Content-Type: application/zip\r\n\r\n	
✓ Media Type	
Media type: application/zip (26135 bytes)	
Boundary: \r\n	
 Encapsulated multipart part: (application/zip) 	
Content-Disposition: form-data; name="file1"; filename="breaking_bad_season_6.zip"\r\n	
Content-Type: application/zip\r\n\r\n	
✓ Media Type	
Media type: application/zip (17383 bytes)	
Figure 12: The two zip files found in packet 2666	
MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "	-19447580611122073289788285183"

atai 50020 bjtts			
ipart Media Encapsulation,	, Type: multipart/form-dat	a, Boundary: "	1944758061112207328
multipart/form-data]			
boundary:	194475806111	22073289788285183\r\n	

capsulated multipart part: (application/zip) Content-Disposition: form-data; name="file0"; filename="canc3l.zip"\r\n Content-Type: application/zip\r\n\r\n Туре dia type: application/zip (35687 bytes)

Figure 13: The one zip file found within 8190

All three zip files were extracted by right clicking the "Media type: application/zip" field and selecting "Export packet bytes". Each file was saved as their respective name with the zip extension.

Once all five zip files had been extracted and unzipped, their contents first appeared meaningless. However, upon further examination, a select few files appeared to include the start of a JPEG file, noted by the hex characters "FF D8 FF".

A script was written to combine all the files that made up an Edward Snowden quote and output them as one image. The quote that was the key to their assembly was "I cant in good conscience allow the U.S. government to destroy privacy internet freedom and basic liberties for people around world with this massive surveillance machine theyre secretly building". This quote was found by searching the name of each valid JPEG file through Google until a quote that could be made using the words provided was found. Punctuation was removed from the quote along with the second instance of "the" between "for" and "people" since there was only one "the" file. The full script that was used to do this can be found in Appendix D.

Once run, the script created an image of a futuristic chess board which can be seen below.

Figure 14: The image recovered from the combined 5 zip files found in capture 3

Anti-forensic techniques have clearly been used here, as this method of separating an image into coded file names amongst a vast number of red herrings it not a traditional way to transfer images. This behaviour should be treated as highly suspicious.

Investigation of Capture4.pcap

Due to the brief, IRC traffic was initially checked using Wireshark, but none was found. Statistical packet analysis was also employed but created no leads due to how thinly spread traffic appeared to be. HTTP traffic was searched manually via Wireshark and interesting traffic was found between 192.168.1.5 and 199.87.160.87. The latter IP belonged to "Pinger", a company that offers a messaging service, as can be seen in Figure 15.

199.87.160.87 address profile

Whois Diagno	ostics
IP Whois	
NetRange:	199.87.160.0 - 199.87.163.255
CIDR:	199.87.160.0/22
NetName:	PNG-NET1
NetHandle:	NET-199-87-160-0-1
Parent: NetType: OriginAS:	NET199 (NET-199-0-0-0-0) Direct Allocation
Organization:	Pinger, Inc (PINGE)
RegDate:	2011-01-31
Updated:	2021-12-14
Ref:	https://rdap.arin.net/registry/ip/199.87.160.0

Figure 15: A whois lookup against the server IP, revealing it as part of the block owned by Pinger.

The full interaction could be filtered using the following Wireshark query: ((ip.src==192.168.1.5 && ip.dst==199.87.160.87) // (ip.dst==192.168.1.5 && ip.src==199.87.160.87)) && http && http contains "messageText"

This filter also only displayed the packets that had "messageText" in them. The data was sent using JSON files between the client and the server. These JSON files contained a "messageText" and "sendName" field which were critical in piecing together the conversation. An example JSON can be seen below.

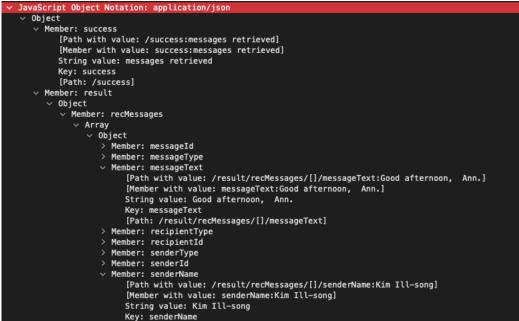


Figure 16: An example JSON request sent from the server to the user containing message details.

Analysing the packets, the investigator found the conversation to be between two parties, Ann Decover and Kim Ill-Song. The conversation mentions a meeting in September at 5pm but does not specify the date. The entire conversation can be found in Appendix E.

To find the date, further HTTP traffic was analysed. Traffic was found to the domain "mob.mapquestapi.com". MapQuest is a mapping application, like Google Maps. Due to the high number of requests sent to the address and its unique nature, it was further investigated. All requests sent to the domain could be viewed using the following Wireshark filter:

http.host eq mob.mapquestapi.com

This traffic was then exported as text by selecting all the packets, clicking File -> Export Packet Dissections -> As plain text. This text file was then fed into a python script that extracted all the unique coordinates found inside the GET request and exported them into a CSV file. This script can be found in Appendix F. This CSV file was then fed into Google Maps to lay out the coordinates. Once laid out, the coordinates arranged into the number 17, presumably the date on which the meeting is to take place. This can be seen in the below figure.

Figure 17: The coordinates found within the traffic laid out on Google Earth, spelling the number 17.

Therefore, it can be presumed that Ann Decover and Kim Ill-Song planned to meet on the 17^{th} of September at 5pm.

<u>Bibliography</u> Wireshark, 2020. *Server Message Block Protocol (SMB).* [Online] Available at: <u>https://wiki.wireshark.org/SMB</u> [Accessed 25 December 2021].

<u>Appendix A</u>

Statistical Flow Analysis File Preparation

To prepare a file for statistical flow analysis, the capture file was first converted into a "Yet Another Flowmeter" (YAF) file using the YAF tool. The following command was run against the capture PCAP file to do this:

yaf --in Capture.pcap --out capture.yaf

This converted the file from its original PCAP type to YAF. The file was then converted into the appropriate format to be analysed using the System for Internet-Level Knowledge (SiLK⁴). This was done by running the following command against the newly created YAF file:

rwipfix2silk capture.yaf --silk-output=capture.rw

This command generated a new .rw file that could then be used to conduct statistical flow analysis.

<u>Appendix B</u> track6.docx

Encoded

VGhlIE15c3Rlcnkgb2YgQ2hlc3MgQm94aW5nOg0KKHVzZXJuYW1lcykNCg0KTXIuIE1ld GhvZA0KDQpLaW0gSWxsLVNvbmcNCg0KTXIuIFJhem9yDQoNCk1yLiBHZW5pdXMNCg 0KTXIuIEcuIEtpbGxhaA0KDQpNYXR0IENhc3NlbA0KDQpNci4gSS4gRGVjaw0KDQpNci4 gTSBLaWxsYQ0KDQpNci4gTy5ELkIuDQoNCk1yLiBSYWVrd29uDQoNCk1yLiBVLUdvZA 0KDQpNci4gQ2FwcGFkb25uYSAocG9zc2libHkpDQoNCkpvaG4gV29vPw0KDQpNci4gT mFzDQo=

<u>Decoded</u> The Mystery of Chess Boxing: (usernames)

Mr. Method

Kim Ill-Song

Mr. Razor

Mr. Genius

⁴ https://tools.netsa.cert.org/silk/index.html

Mr. G. Killah

Matt Cassel

Mr. I. Deck

Mr. M Killa

Mr. O.D.B.

Mr. Raekwon

Mr. U-God

Mr. Cappadonna (possibly)

John Woo?

Mr. Nas

Appendix C

Decoded IRC Conversation

Ill Song: Mr. Razor, I am excited about the prospect of the Chess Boxing world title coming to Pyongyang.

Razor: Well the decision is not final yet.

Razor: I am a very busy man, but perhaps I could be persuaded to visit. See if Pyongyang is the right place for the World Title.

Ill Song : Perhaps not. How about I send you a gift? Something to get you out of the City of Love and take your own vacation somewhere.

Razor: Somewhere expensive, I hope.

Ill Song: 5 Razor: 9 Ill Song: 7 Razor: \$700,000 it is. Where can I meet you? Ill Song: I will be in touch with the address.

Ill Song: As we discussed earlier, I believe I might be able to help you with your search.

Genius: I see. Then we must meet, and I will see the validity of this claim.

Ill Song: I can be in Caracaswithin the week.

Genius: No. Not here. Can I not go to you?

Ill Song: I am afraid that would be unwise. I will send you a message with the date and location through a more secure form of communication.

Ill Song: Mr. Method, I am excited about the prospect of the Chess Boxing world title coming to Pyongyang.

Method: I am not sure who you are, but I have an idea. Either way, I am not interested.

Ill Song: I am just hopeful. It would mean so much to have the Title here. Please consider it.

Method: Do not speak to me again.

Ill Song: How is the weather in Qatar, Mr. Killah?

Killah: Hot, as always. Who is this?

Ill Song: I am a fan of Chess Boxing. I would love to see the Title held in Korea. Killah: We will have to see how the bid turns out.

Ill Song: Is there anything that I could do to help make your decision easier? Killah: No! The great nation of Qatar would never be swayed so easily.

Killah: Nor would I. We do not take kindly to this pathetic notion of bribery.

Ill Song: Mr. Raekwon, have you spoken with Mr. Razor?

Raekwon: I have, but I won.t be bought so easily.

Ill Song: Bought? Of course not. You are an official on the executive committee of the ICBA. I just want you to know that I am here to help make your decision as easy as possible.

Raekwon: I would need at least 20 million Rubles.

Ill Song: Consider it done. I will send you the information for the drop-off point soon.

<u>Appendix D</u>

Capture 3 Image Combination Script

quote = "I cant in good conscience allow the U.S. government to destroy privacy internet freedom and basic liberties for people around world with this massive surveillance machine theyre secretly building"

```
image = open("final.hex","wb")
for f in quote.split():
    f = f +".jpg"
    part = open(f,"rb")
    print("Handling: ",f)
    image.write(part.read())
```

Appendix E Full Conversation Kim Ill-song Good afternoon, Ann. Ann Dercover who is this Ann Dercover where are you? Kim Ill-song Castling. Ann Dercover Do you know that there are people investigating Kim Ill-Song? Kim Ill-song I know I can't tell you that. Kim Ill-song
Of course. However, they will never know it is me behind the bribes.
Ann Dercover
still we should be careful. Pay attention. I want to meet in September at 5PM.
Kim Ill-song
At our old meetup spot?
Ann Dercover
yes
Kim Ill-song
What day?
Ann Dercover
I told you to pay attention.

<u>Appendix F</u> <u>Python Script to extract coordinates</u>

f = open("/Users/chris/Desktop/loc.txt", "r") #path to exported packets

```
lines = f.readlines()
coords=[]
for line in lines:
    if "location=" in line:
        str = line.split("location=",1)[1]
        #clean out junk
        str = str.replace("HTTP/1.1","")
        str = str.replace("%2C",",")
        str = str.replace("\\r\\n","")
        str = str.replace("\\n","")
        str = str.replace("]","")
        str = str.replace("]","")
        coords.append(str)
coords = list(set(coords)) #remove duplicates
```

```
#write to CSV
output = open("/Users/chris/Desktop/map.csv","w")
output.write("lat,lon\n")
for x in coords:
    output.write(x)
```

print(coords)