CMP416 Assessment 2 - A Case of Bribery - Christopher Di-Nozzi, 1800317

Table of Contents

Investigation Of CAPLUIrE1.PCAPocovmvesessesesssessssissssssssissssssssssissssssssssssssssssssssssssssssssrsssssssssersaes 2
Investigation Of CAPEUIr@2.PCAPcvovsesssusessenes 5
Investigation Of CAPLUIre3.PCAPccvvvesvssisesssssssissssssssissssssssssmsssersaes 8
Investigation Of CAPLUIrE4.PCAPcouvuvuvessiresmsessssisesssssssssssssssssissssssssssssssssssssssssssssssssesssssssssesses 13
BiDliOGTAPRNYocuseisirssnsessisisssssessssssssessssssssssssssssasssssssssassssssssussssssssssssssssssssassssssssnssssssssssssssessssssns 16
APDECNAIX A c.oovireseisssessmsssssssssssssssssssssssssnsssssssssssssssssssssssssusssssnsssussssusssssssssnsssssssssssssssssssssnsssnssssssssnss 16
Y 77723 1 T | . > 16
APPDCIAIX C..oovsvresessisssssesesssssasssssinsassssssssnsasssssssensassssssssnssssssssssussssssssssussssssssasssssssssusassssssssussssssssssss 17
APDENAIX D a.ovsviseseisssessesssssssssssssssssssssssssssssssssssssssnssssssssssssssssssssussssusssssssssnsssssssssssssssssssssssssssnsssssssnns 18
Y 77123 1 T | G 18
APPDCNAIX Fooosireissssissnssssssnsssassssasssssssssssssssssnsssssssssssassssssssssssssnssssssssnss 19

Investigation of Capturel.pcap

This investigation began by conducting statistical flow analysis against the provided
data. The file was first prepared for analysis following the steps outlined in Appendix A.
Once prepared, the file was analysed using the ‘rwstats’ command, as part of the SiLK
suite of network analyses tools, to examine the top 20 flows and display the source IP
and port along with the destination IP and port. The following command was run to do
this:

rwstats capturel.rw --fields=1,2,3,4 --values=packets --count 20

Fields 1,2,3, and 4 specified the inclusion of the source IP (sIP), destination IP (dIP),
source port (sPort), and destination port (dPort). The value ‘packets’ sums all the
packets across all records mapped to each bin. The output of this command can be seen
in Figure 1

chris@apple-crate capture 1 ts capturel.rw fields=1,2 4 values=packets count 20

INPUT: 1380 Records for 13 i nd 30336 Total Packets
OUTPUT: Top 20 Bins by Pac

dIP|sPort|dPort| Packets| %Packets| cumul_%

.55|50180 | 80| 6593 | 21.733254| 21.733254|
.23| 8050180 | 3547| 11.692379| 33.425633|

: 50291| 445| 1336| 4.404008|
.1.23| 445|50291| 942 |
.20| 443| 1784 460 |
03| 1784| 443| 308 |
.20| 80| 1631| 224|
.20| 80| 1633| 224|
80| 1696| 224|

80| 1787|
80| 1626|
1668 |
1692 |
1700 |
1764 |
1630 |
1628|
1701|
1769 |

80|

.738397 |
.738397| 45.68
.738397 |
.738397 |
.738397| 4
.735100 |
.735100| 49.3
.735100|
.735100 |
0.735100

(S W

NNN

[NENEN]

&5
SO0 ®

NENENENENENEN]

.019515 |
.691983 |

SPNNNNNN
POWWWWWW

N

Figure 1: rwstats output of capturel.rw displaying the source port and IP along side the destination IP and port of the
top 20 flows.

All the standard protocols seen (80/HTTP,445/SMB,443 /HTTPS) could have been used
for file transfers. HTTP and HTTPS could be used to download files from a web server,
while SMB could have been used to transfer files from a network share. The first two
flows (23->55 and 55->23) were examined but no traces of file transfers were found.
Traffic related to AOL emails were found, and a zip file was uncovered which contained
another .pcap file, but this was decided to be unrelated to the investigation at hand since
it did not help to fulfil the given brief.

Analysing the SMB traffic provided significantly more interesting results. SMB is a
remote file access protocol commonly used on Windows, (Wireshark, 2020). Therefore,
it could be used to download files from one system to another.

The following query was used in Wireshark to filter the traffic between 172.29.1.23 and
20:

((ip.src==172.29.1.23 && ip.dst==172.29.1.20)/|(ip.dst==172.29.1.23 &&
ip.src==172.29.1.20)) && smb

This query filtered all traffic that was from .23 towards .20, or vice versa. The ‘.src’ and
‘.dst’ parts were used to provide clarity to the reader. The “&& smb” keyword at the end
caused only the SMB traffic to be displayed, rather than all the other associated TCP
packets. This reduced the amount of noise displayed to the analyst and made finding
key information easier. Analysing these packets showed there had been file transfers
between the two network devices. A snippet of this traffic can be seen in Figure 2.

5898 243.765960 .29.1.23 50191 172.29.1.20 139 SMB 213 Negotiate Protocol Request
« 766459 . . . Negotiate Protocol Response

5908 243.934327 .29.1. 50191 172.29.1. 139 SMB 162 Session Setup AndX Request, NTLMSSP_NEGOTIATE

59081 243.934826 .1.20 139 172.29.1.23 58191 SMB 319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
5983 244.118929 .1.23 50191 172.29.1.20 139 SMB 238 Session Setup AndX Request, NTLMSSP_AUTH, User: \

5904 244.119929 .1.20 139 172.29.1.23 50191 SMB 175 Session Setup AndX Response

5986 244.275556 .1.23 50191 172.29.1.20 139 SMB 136 Tree Connect AndX Request, Path: \\DOG-WS\IPC$

5907 244.275811 .1.20 139 172.29.1.23 50191 SMB 114 Tree Connect AndX Response

5988 244.336758 .1.23 50191 172.29.1.20 139 LAN.. 172 NetServerEnum2 Request, Domain Enum

5909 244,337256 .1.20 139 172.29.1.23 58191 LAN.. 138 NetServerEnum2 Response

5910 244.340753 .1.23 50191 172.29.1.20 139 LAN.. 186 NetServerEnum2 Request, Workstation, Server, SQL Server, Domain Controll
5911 244.341003 .1.20 139 172.29.1.23 58191 LAN.. 193 NetServerEnum2 Response

5949 257.521887 .1.23 58191 172.29.1.20 139 SMB 93 Tree Disconnect Request

5958 257.522855 .1.20 139 172.29.1.23 58191 SMB 93 Tree Disconnect Response

5951 257.594995 .1.23 58191 172.29.1.20 139 SMB 97 Logoff AndX Request

5952 257.595003 .1.20 139 172.29.1.23 58191 SMB 97 Logoff AndX Response

6096 264.752321 . . 50193 172.29.1.20 139 SMB 213 Negotiate Protocol Request

60897 264.752570@ .29.1. 139 172.29.1.23 58193 SMB 143 Negotiate Protocol Response

6098 264.877972 .1.23 50193 172.29.1.20 139 SMB 162 Session Setup AndX Request, NTLMSSP_NEGOTIATE

60899 264.878221 .1.20 139 172.29.1.23 58193 SMB 319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
6108 265.009369 .1.23 50193 172.29.1.20 139 SMB 238 Session Setup AndX Request, NTLMSSP_AUTH, User: \

6101 265.010366 .1.20 139 172.29.1.23 58193 SMB 175 Session Setup AndX Response

6184 265.225195 .1.23 50193 172.29.1.20 139 SMB 136 Tree Connect AndX Request, Path: \\DOG-WS\IPC$

6185 265.225451 .1.20 139 172.29.1.23 58193 SMB 114 Tree Connect AndX Response

6186 265.298389 .1.23 50193 172.29.1.20 139 LAN.. 176 NetServerEnum2 Request, Workstation, Server, SQL Server, Domain Controll
6107 265.298638 .1.20 139 172.29.1.23 50193 LAN.. 193 NetServerEnum2 Response

6188 265.299387 .1.23 50193 172.29.1.28 139 LAN.. 176 NetServerEnum2 Request, Domain Enum

6109 265.299639 .1.20 139 172.29.1.23 50193 LAN.. 155 NetServerEnum2 Response

6373 275.542514 .1.23 50193 172.29.1.20 139 SMB 93 Tree Disconnect Request

6374 275.542769 .1.20 139 172.29.1.23 58193 SMB 93 Tree Disconnect Response

6403 275.579734 .1.23 50193 172.29.1.20 139 SMB 97 Logoff AndX Request

6484 275.579741 .1.20 139 172.29.1.23 58193 SMB 97 Logoff AndX Response

23838 641.752417 . . 58291 172.29.1.20 445 SMB 213 Negotiate Protocol Request

23839 641.752917 .29.1. 445 172.29.1.23 50291 SMB 143 Negotiate Protocol Response

23841 £41.878067 .1.23 58291 172.29.1.20 445 SMB 162 Session Setup AndX Request, NTLMSSP_NEGOTIATE

23842 641.878569 .1.20 445 172.29.1.23 58291 SMB 319 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCE
23844 £42.004966 .1.23 50291 172.29.1.20 445 SMB 584 Session Setup AndX Request, NTLMSSP_AUTH, User: fox-ws\test

23845 642.006724 .1.20 445 172.29.1.23 58291 SMB 175 Session Setup AndX Response

23848 £42.075412 .1.23 50291 172.29.1.20 445 SMB 136 Tree Connect AndX Request, Path: \\DOG-WS\IPC$

23849 642.075666 .1.20 445 172.29.1.23 58291 SMB 114 Tree Connect AndX Response

23850 642.131618 .1.23 50291 172.29.1.20 445 SMB 158 NT Create AndX Request, FID: @x4@0@, Path: \srvsvc

23851 £42.131867 .1.20 445 172.29.1.23 58291 SMB 193 NT Create AndX Response, FID: @x4000

23852 642.132369 .1.23 50291 172.29.1.20 445 SMB 130 Trans2 Request, QUERY_FILE_INFO, FID: @x480@8, Query File Standard Info
23853 £42.132380 .1.20 445 172.29.1.23 58291 SMB 142 Trans2 Response, FID: 8x4@@@, QUERY_FILE_INFO

23854 642.204561 .1.23 508291 172.29.1.20 445 DCE.. 238 Bind: call_id: 2, Fragment: Single, 2 context items: SRVSVC V3.8 (32bit
23855 £42.204808 .1.20 445 172.29.1.23 50291 SMB 165 Write AndX Response, FID: @x480@, 116 bytes

Figure 2: A section of the SMB traffic analysed.

In Wireshark, by selecting File -> Export Objects -> SMB, a list of files transferred over
SMB could be seen. In this list of 9 files seen in Figure 3. Of these files, only 1 was
successfully downloaded, packet 24186, writing the file “Documents.zip” to the user’s
device.

Packet ~ | Hostname Content Type | size | Filename

23854 \\DOG-WS\IPC$ PIPE (Not Implemented) (0/0) W [0.00%] O bytes \srvsvc

23902 \\DOG-WS\DOCUMENTS FILE (129/129) R [100.00%)] 129 bytes \desktop.ini

23924 \\DOG-WS\DOCUMENTS FILE (151/151) R [100.00%] 151 bytes \My Music\desktop.ini
23932 \\DOG-WS\DOCUMENTS FILE (150/150) R [100.00%)] 150 bytes \My Pictures\desktop.ini
23940 \\DOG-WS\DOCUMENTS FILE (151/151) R [100.00%)] 151 bytes \My Videos\desktop.ini

24021 \\DOG-WS\DOCUMENTS FILE (42/42) R [100.00%] 42 bytes \My Pictures\Sample Pictures\desktop.ini
24186 \\DOG-WS\BLAH FILE (1324022/1324022) W [100.00%] 1324kB \Documents.zip
25755 \\DOG-WS\BLAH FILE (1014/1324022) R [0.00%)] 1324kB \DOCUME~1.ZIP
25785 \\DOG-WS\BLAH FILE (5110/1324022) R [0.00%] 1324kB \DOCUME~1.ZIP

Figure 3: Files transferred via SMB in Capture 1.

This transaction was confirmed to be between .23 and .20 by locating it within the
above-mentioned Wireshark filter. The file could be extracted from the capture by
selecting it from the form above and clicking save. Once saved, the zip could be
extracted, and several files were revealed. The zip contained the following directories
(d), sub-directories (sd) and files (f):
Documents (d)
- Actual Documents (sd)
o GoT Spoilers.docx (f)
o NotherKorea.docx (f)
o PiD.docx (f)
- Chess Boxing (sd)
o NKjpg (f)
o Rules 1..docx (f)
o Rules 2.docx (f)

Rules 3.docx (f)
Rules 4.docx (f)
Rules 5.docx (f)
Rules 6.docx (f)

o Rules 2.docx (f)

- Enter the WuTang(sd)
o track6.docx (f)
o track10.docx (f)
- More Documents(sd)

o BillOfRights.txt (f)

o NorthKorea.jpeg (f)
There was another zip file found within named “untitled.zip” which contained 5 other
empty folders nested in each other. The final directory was named “SilentEye”, the same
name as a steganography tool. Using this hint, a python file was discovered within
NorthKorean.jpeg but posed no use to the questions of this investigation.
All the above files were analysed. The contents of each .docx file was encoded using
Base64. The file of most interest to this investigation was “track6.docx” found within
“Enter the WuTang”. After decoding this file, a list of usernames was discovered. This
list could potentially be a list of actors involved in the bribery case. The full list can be
found in Appendix B. A list of only the names has been provided below.

o O O O

- Mr. Method

- Kim Ill-Song
- Mr. Razor

- Mr. Genius

- Mr. G. Killah
- Matt Cassel

- Mr. I Deck

- Mr. MKilla

- Mr. O0.D.B.

- Mr. Raekwon
- Mr. U-God

- Mr. Cappadonna (possibly)
- John Woo?

- Mr. Nas

This analysis has shown the “Documents.zip” was transferred from 172.29.1.20 to
172.29.1.23. The recovery and decoding method have been outlined and the most likely
contender for aliases of actors within the corruption case have been retrieved.

Investigation of Capture2.pcap

The brief for this capture mentioned IRC traffic, therefore, this was used as a starting
point for analysis. IRC traffic could be filtered in Wireshark by simply filtering the
keyword “IRC”. This could be filtered further to display only the requests that included
private messages using the filter “irc.request.command==PRIVMSG”. There was IRC
traffic from two different internal address, 172.29.1.17 and 172.29.1.21, however,
packet number 22 from .17 contained the full conversation transaction and was
therefore used for further analyses. Packet 22 could be right clicked and Follow -> TCP
Protocol could be selected to view the entire flow. To automate the extraction of the
messages, the tshark?! tool was used with the following command line:

./tshark -r captureZ2.pcap -Y "(irc.request.command==PRIVMSG ||
irc.response.command==PRIVMSG) && (ip.addr ==172.29.1.17)" -T fields -e "irc.request” -
e "irc.response”

The above command invoked tshark against the capture2.pcap file provided for
analysis. The capture was filtered from all IRC requests and responses that included the
PRIVMSG command, and that were sent from or to the .17 IP address. These requests
then had the request and response sections extracted from them. An example of a
request section from Wireshark can be seen in Figure 4, highlighted in red.

~ | Time
22 15.858733 185.38. 1
122 88.671858 185,38, 1

173 126,114049 .29.1. B4 Request (PRIVMSG)
251 186.026248 .29.1. .30, 166, 84 Request (PRIVMSG)
342 256,642491 = 185,38, 166, 168 Request (PRIVMSG)
3192 360.116738 i 245 Request (PRIVMSG)

2 6667 IAC 469 Request (PRIVMSG)

0gMDUR IDABMCAXNDEGHTUZ IDESNCAWNDAGMTEX IDABMCAxN g

TY 3 IDEONSAMNDAGHTU 1 TDEZNS/ MTOLIDENS A GQMOLRTO MTEXTDABMCARN] cMTUXIDEINCAXNTOGHO

Figure 4: An example of the request portion of the IRC packet, containing an encoded PRIVMSG.

The contents of the above command line were outputted into a text file. Once extracted,
the conversation appeared to be encoded. Messages from Ill Song were decoded first
from Base64 and then Base32. Messages from Razor were first decoded from Base64
and then Hex. Messages from Genius were decoded using Base64 and then Octal. One
message from Genius contained an MD5 hash that was cracked separately using
crackstation?. This can be seen in the below figure.

Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:

c9fa5bB8cb3bl97ae5cedbaf8415a375b

. I'm not a robot T

reCAPTCHA
Privacy - Terms

Supports: LM, NTLM, md2, md4, md5, md5(md5_hex), md5-half, shal, sha224, sha256, sha384, sha512, ripeMD160, whirlpool, MySQL 4.1+ (shal(shal_bin)),
QubesV3.1BackupDefaults

Hash Type Result

Figure 5: Cracked hash found within the IRC conversation between Ill Song and Genius.

Lhttps://www.Wireshark.org/docs/man-pages/tshark.html
2 https://crackstation.net/

5

Messages from Method were decoded via Base64 and then Hex. The second message
sent to Method was unusually decoded. After being decoded from Base64, the first half
(“SSBhbSBqdXNOIGhvcGVmdWwulEIOIHdvdWxkIG11YW4gc28gbXVjaCBObyBoYXZIIHR
") of the messages could again be Base64 decoded into an incomplete message: “I am
just hopeful. It would mean so much to have t”. The second half of the original message
could be Base32 decoded to show the whole message: “I am just hopeful. It would mean
so much to have the Title here. Please consider it.”. It’s unclear whether this was a
technical issue or a obfuscation tactic.

Messages from Killah were decoded using Base64 and then Octal decoding. Finally,
messages from Raekwon were decoded using Base64 and then Hex. All decoding was
done using CyberChef3. The table below lays out the various general techniques used by

each actor to encode their own messages.
Table 1: The general technique used by each actor to encode their IRC messages.

Technique Actor

Base3?2 -> Base64 [l Song

Hex -> Base64 Razor, Raekwon, Method
Octal -> Base64 Genius, Killah

The fully decoded conversation can be found in Appendix C.
From the conversations, claims can be made about the location and innocence of all
parties to some extent. This information has been condensed into a table for easy

comprehension.
Table 2: The Country and Conviction of each actor involved in the IRC conversations.

Actor Country Status

Razor Paris, France Guilty

Genius Likely Caracas, Likely Guilty
Venezuela

Method Unknown Innocent

Killah Qatar Innocent

Raekwon Russia Guilty

Razor was assumed to be in Paris due to the mention of “The City of Love” by 11l Song.
Razor also accepted a bribe of $700,000 after a short period negotiation.

Genius is assumed to be in Caracas due to its mention as a meeting point in their
conversation, however, it could be the case that this was simply a meeting point and not
their own country. From the conversation analysed, it's unclear whether Genius is guilty
as no bribe is explicitly accepted, however, due to their intention to “see the validity of
this claim” it could be assumed there is intention to accept a bribe if presented.
Method'’s location could not be pinpointed using the conversation, but made it clear they
had no intention of speaking to Ill Song and took no bribe.

Killah is most likely located in Qatar since I1l Song asks about the weather there, and
Killah answers “Hot, as always.”, implying they have been there a while. Killah is
seemingly not guilty of bribery, stating to Ill Song “We do not take kindly to this pathetic
notion of bribery.”

Finally, Raekwon appears to be based in Russia due to the discussion of a payment
being made in Rubles, the currency used in Russia. Raekwon demands a bribe of 20

3 https://gchq.github.io/CyberChef/
6

million Rubles and is told by Ill Song that it will be delivered. Thus, Raekwon is also
guilty of bribery.

Investigation of Capture3.pcap

The brief for this capture highlighted FTP traffic, therefore, this is where the
investigation began. FTP, or File Transfer Protocol, is used to transfer files, usually from
a dedicated file storage server to a client but can also be used between two clients who
host the server themselves.

To filter for FTP in Wireshark, FTP can simply be entered in the filter bar. This displayed
FTP traffic between 172.29.1.21 and 172.29.1.23. .23 appeared to be the server,
nicknamed “Super Secret Server”, as can be seen in its initial response to the request
from .21 (1). The user then logged in with the username and password “Ill_Song” (2)
and proceeded to change into the “/home/Ill_Song” directory (3). Then the
“sandofwhich.zip” (4) and “o0jd34.zip” (5) files were transferred successfully from the
server to the client. All the above cations can be seen in Figure 6.

N [ftp
No. | Time Source | Sre Port | Destination | Dst Port | Protor| Lengtt| Info
5852 179.750171 172.29.1.21 21 172.29.1.23 51461 FTP Response: 220 Super Secret Server

5853 179.758921 172.29.1.21 21 172.29.1.23 51462 FTP 79 |Response: 220 Super Secret Server
5854 179.767158 172.29.1.23 51461 172.29.1.21 21 FTP 69 |Request: USER Ill_Song

5856 179.767169 172.29.1.21 21 172.29.1.23 51461 FTP 88
5857 179.767408 172.29.1.23 51462 172.29.1.21 21 FTP 69
5859 179.767420 172.29.1.21 21 172.29.1.23 51462 FTP 88
5868 179.767658 172.29.1.23 51461 172.29.1.21 21 FTP 69
5861 179.767666 172.29.1.23 51462 172.29.1.21 21 FTP 69

Response: 331 Please specify the password.
Request: USER I1l_Song

Response: 331 Please specify the password. 2
Request: PASS Ill_Song
Request: PASS I1l1_Song

5864 179.887813 172.29.1.21 21 172.29.1.23 51461 FTP 77 Response: 0gin successtu

5865 179.888312 172.29.1.23 51461 172.29.1.21 21 FTP 68 Request: OPTS UTFB ON

5867 179.888324 172.29.1.21 21 172.29.1.23 51461 FTP B0 Response: 200 Always in UTF8 mode.

5868 179.888811 172.29.1.21 21 172.29.1.23 51462 FTP 77 Response: 238 Login successful.

5869 179.903300 172.29.1.23 51461 172.29.1.21 21 FTP 74 |Request: CWD /home/Ill_Song 3

5878 179.903550 172.29.1.21 21 172.29.1.23 51461 FTP 91 |Response: 258 Directory successfully changed

5871 180.012463 172.29.1.23 51462 172.29.1.21 21 FTP 68 Reques PTS UTFE ON

5873 180.012713 172.29.1.21 21 172.29.1.23 51462 FTP B@ Response: 200 Always in UTF8 mode.

5874 180.027202 172.29.1.23 51462 172.29.1.21 21 FTP 74 Request: CWD /home/Ill_Song

5875 180,027451 172.29.1.21 21 172.29.1.23 51462 FTP 91 Response: 258 Directory successfully changed.

5881 181.858756 172.29.1.23 51461 172.29.1.21 21 FTP 62 Request: TYPE I

58B2 181.858766 172.29.1.21 21 172.29.1.23 51461 FTP B85 Response: 200 Switching to Binary mode.

5883 181.949429 172.29.1.23 51461 172.29.1.21 21 FTP 60 Request: PASV 4
5884 181.949927 172.29.1.21 21 172.29.1.23 51461 FTP 104 Response: 227 Entering Passive Mode (172,29,1,21,216,252).

5885 181.959170 172.29.1.23 51461 172.29.1.21 21 FTP 76 |Request: RETR sandofwhich.zip

5891 182.022369 172.29.1.21 21 172.29.1.23 51461 FTP 130 |Response: 150 Opening BINARY mode data connection for sandofwhich.zip (24792 bytes).
5919 182.025117 172.29.1.21 21 172.29.1.23 51461 FTP 78 |Response: 226 Transfer complete.

5928 183.034570 172.29.1.23 51462 172.29.1.21 21 FTP 62 Request: TYPE I

5929 183.034817 172.29.1.21 21 172.29.1.23 51462 FTP B85 Response: 280 Switching to Binary mode.

5938 183.061296 172.29.1.23 51462 172.29.1.21 21 FTP 60 Request: PASV

5931 183.061545 172.29.1.21 21 172.29.1.23 51462 FTP 183 Response: 227 Entering Passive Mode (172,29,1,21,121,89).

5832 183.071288 172.29.1.23 51462 172.29.1.21 21 FTP 70 |Request: RETR ojd34.zip

5937 183.175963 172.29.1.21 21 172.29.1.23 51462 FTP 124 |Response: 15@ Opening BINARY mode data connection for ojd34.zip (24714 bytes).
5965 183.178702 172.29.1.21 21 172.29.1.23 51462 FTP 78 |Response: 226 Transfer complete,

5969 183.203432 172.29.1.23 51462 172.29.1.21 21 FTP 60 Request: PASV

5971 183.203933 172.29.1.21 21 172.29.1.23 51462 FTP 184 Response: 227 Entering Passive Mode (172,29,1,21,207,194). 5
5972 183.273128 172.29.1.23 51462 172.29.1.21 21 FTP 60 Request: LIST

5982 183.341823 172.29.1.21 21 172.29.1.23 51462 FTP 93 Response: 158 Here comes the directory listing.

5986 183.342076 172.29.1.21 21 172.29.1.23 51462 FTP 78 Response: 226 Directory send OK.

7839 242.045773 172.29.1.21 21 172.29.1.23 51461 FTP 64 Response: 588 00PS:

7848 242.045776 172.29.1.21 21 172.29.1.23 51461 FTP 84 Response: vsf_sysutil_recv_peek: no data

7841 242.045780 172.29.1.21 21 172.29.1.23 51461 FTP 60 Response:

7884 243.186122 172.29.1.21 21 172.29.1.23 51462 FTP 64 Response: 588 00PS:

7885 243,186125 172.29.1.21 21 172.29.1.23 51462 FTP B4 Response: vsf_sysutil_recv_peek: no data

7886 243.186129 172.29.1.21 21 172.29.1.23 51462 FTP 60 Response:

Figure 6: Annotated copy of the ftp traffic found in capture 3

To extract these two zip files, the analyst changed the filter from “ftp” to “ftp || ftp-data”
filtering to both ftp and ftp-data traffic. Ftp-data represents the data transported over
port 20, rather than the port 21 most associated with FTP. Port 20 sends data, while
port 21 handles the control. Once the filter was changed, the files could be extracted
from their ftp-data streams. The two ftp-data streams containing the files can be seen in
Figure 7 (sandofwhich.zip)and Flgure 8 (0jd34.zip).

5885 181.95917@ 172.29.1.23 51461 172.29.1.21 76 Request: RETR sandufwmch zip

5891 182.822369 172.29.1.21 21 172.29.1.23 51461 FTP 138 Response: 158 Opening BINARY mode data connection for sandofwhich.zip (24792 bytes).
5892 182.822621 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5893 182.022634 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 146@ bytes (PASV) (RETR sandofwhich.zip)
5894 182.0822870 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip
5896 182.0228BB6 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5897 182.023121 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5898 182.0823134 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5899 182.023369 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 146@ bytes (PASV) (RETR sandofwhich.zip)
5908 182.823381 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1468 bytes (PASV) (RETR sandofwhich.zip)
5901 182.823619 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5982 182.023630 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5903 182.823870 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5984 182.023881 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 146@ bytes (PASV) (RETR sandofwhich.zip)
5918 182.824370 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5911 182.824619 172.29.1.21 55548 172.29.1.23 51463 FTP. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5912 182.024631 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR sandofwhich.zip)
5913 182.0824869 172.29.1.21 55548 172.20.1.23 51463 FTP.. 1514 FTP Data: 1468 bytes (PASV) (RETR sandofwhich.zip)
5914 182.024880 172.29.1.21 55548 172.29.1.23 51463 FTP.. 1486 FTP Data: 1432 bytes (PASV) (RETR sandofwhich.zip)
5919 182.825117 172.29.1.21 21 172.29.1.23 51461 FTP 78 Response: 226 Transfer complete.

Figure 7: The ftp-data stream transferring sandofwhich.zip

5932 183.071288 172.29.1.23 51462 172.29.1.21 21 FTP 70 Request: RETR ojd34.zip

5937 183.175963 172.29.1.21 21 172.29.1.23 51462 FTP 124 Response: 150 Opening BINARY mode data connection for o0jd34.zip (24714 bytes).
5938 183.176206 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5939 183.176219 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5940 183.176455 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5942 183.176473 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5943 183.176705 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5944 183.176717 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5945 183.176955 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5946 183.176967 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5947 183.177210 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5948 183.177221 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5949 183.177459 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5950 183.177471 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5956 183.177956 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5957 183.178204 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5958 183.178216 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5960 183.178454 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1514 FTP Data: 1460 bytes (PASV) (RETR ojd34.zip)
5961 183.178467 172.29.1.21 31065 172.29.1.23 51464 FTP.. 1408 FTP Data: 1354 bytes (PASV) (RETR ojd34.zip)
5965 183.178702 172.29.1.21 21 172.29.1.23 51462 FTP 78 Response: 226 Transfer complete.

Figure 8: The ftp-data stream transferring ojd34.zip

The files could then be extracted by right clicking on one of the data packets and
selecting Follow -> TCP Stream. Then the “Show data as” format was changed to Raw
and each file was saved under its respective name, “sandofwhich.zip” and “ojd34.zip”.
Once extracted, both zips could be opened to reveal their contents. They each contained
one folder full of .jpg file that could not be opened, except for “sandofwhich/Ljpg” which
displayed nothing useful, as can be seen below.

Figure 9: The contents of "sandofwhich/1jpg"

[t appeared to be an incomplete image. All the files were named seemingly random
words. At this stage, the hypothesis was that if a certain phrase was created with all the
words, they could be combined into one image, however, there were not enough files
between the two folders to create an Edward Snowden quote, as hinted too in the brief.
Therefore, statistical flow analysis was employed to find more files.

Following the steps laid out in Appendix A, the file was prepared for analysis. The
‘rwstats’ command was then used to examine the top 20 flows in the traffic. The
command and output can be seen in the figure below.

9

yle-crate capture3 % rwstats capti ields=1,2,3,4 —values=packets --count 20
2383 Records for 2356 Bins and 190
OUTPUT: Top 20 Bins by Packets
dIP|sPort|dPort|
21| |40263 |
).148|40263| 443|
80|51515|
44351442 |
|51515| 80|
80|51513|
8052374 |
8051511 |
8051510 |
| 48055 | 80|
|52374| 80|
.147|51442| 443|
1.23| 80|51514|
8051570 |
80|
80|
80|
44351517 |
44344698 |
80|

N

COOCOCOOR R R

oo

Each flow was analysed in Wireshark for any interesting traffic. The traffic between
172.29.1.21 and 64.12.132.39 proved most interesting. Performing a “whois” lookup
against the 64.12.132.39 address revealed it was part of the ARIN CIDR block
64.12.0.0/16 owned by AOL, as can be seen in Figure 11.

chris@apple-crate capture3 % whois 64.12.132.39
% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object

refer: whois.arin.net

inetnum: 64.0.0.0 - 64.255.255.255
organisation: ARIN

status: ALLOCATED

whois: whois.arin.net

changed: 1999-07
source: TANA

whois.arin.net

64.12.0.0 - 64.12.255.255

Parent: NET64 (NET-64-0-0-0-0)

NetType: Direct Allocation

0riginAS:

Organization: Oath Holdings Inc. (OH-207)
1999-12-13
2019-03-22
https://rdap.arin.net/registry/ip/64.12.0.0

Figure 11: Results of a whois lookup against the external IP 64.12.132.39

The traffic between the two devices appeared to be around AOLs email service. Two
postrequests were found that involved sending messages. These could be filtered in
Wireshark using the following query:

((ip.dst==172.29.1.21 && ip.src==64.12.132.39) |[(ip.src==172.29.1.21 &&
ip.dst==64.12.132.39)) && http.request.method==POST && http.request.uri contains
"SendMessage"

When sending an email via AOL, a “SendMessage” POST request is used. The above filter
showed the traffic between the two Ips and then filtered again for POST requests and
finally for POST requests containing “SendMessage”. Both the packets found (2666 and
8190) contained zip files that could be extracted. These can be seen in Figure 12 and
Figure 13.

10

v MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: " —————————————506390528859906812396841278"
[Type: multipart/form-datal
First boundary: 506390528859906812396841278\r\n
v Encapsulated multipart part: (application/zip)
Content-Disposition: form-data; name="file@"; filename="34jdsioj.zip"\r\n
Content-Type: application/zip\r\n\r\n
v Media Type

Media type: application/zip (26135 bytes)
Boundary: \r\n 506390528859906812396841278\r\n
v Encapsulated multipart part: (application/zip)
Content-Disposition: form-data; name="filel"; filename="breaking_bad_season_6.zip"\r\n
Content-Type: application/zip\r\n\r\n
v Media Type
Media type: application/zip (17383 bytes)

Figure 12: The two zip files found in packet 2666

~ MIME Multipart Media Encapsulation, Type: multipart/form-data, Boundary: "-——————————————————————19447580611122073289788285183"
[Type: multipart/form-data]
First boundary: 19447580611122073289788285183\r\n
v Encapsulated multipart part: (application/zip)

Content-Disposition: form-data; name="file@"; filename="canc3l.zip"\r\n
Content-Type: application/zip\r\n\r\n
v Media Type
Media type: application/zip (35687 bytes)

Figure 13: The one zip file found within 8190

All three zip files were extracted by right clicking the “Media type: application/zip” field
and selecting “Export packet bytes”. Each file was saved as their respective name with
the zip extension.

Once all five zip files had been extracted and unzipped, their contents first appeared
meaningless. However, upon further examination, a select few files appeared to include
the start of a JPEG file, noted by the hex characters “FF D8 FF”.

A script was written to combine all the files that made up an Edward Snowden quote

and output them as one image. The quote that was the key to their assembly was “1
cant in good conscience allow the U.S. government to destroy privacy
internet freedom and basic liberties for people around world with this

massive surveillance machine theyre secretly building”. This quote was
found by searching the name of each valid JPEG file through Google until a quote that
could be made using the words provided was found. Punctuation was removed from the
quote along with the second instance of “the” between “for” and “people” since there
was only one “the” file. The full script that was used to do this can be found in Appendix
D.

Once run, the script created an image of a futuristic chess board which can be seen
below.

11

J
I, \

WY | [T

rgm 3 .

Figure 14: The image recovered from the combined 5 zip files found in capture 3

Anti-forensic techniques have clearly been used here, as this method of separating an
image into coded file names amongst a vast number of red herrings it not a traditional
way to transfer images. This behaviour should be treated as highly suspicious.

12

Investigation of Capture4.pcap

Due to the brief, IRC traffic was initially checked using Wireshark, but none was found.
Statistical packet analysis was also employed but created no leads due to how thinly
spread traffic appeared to be. HTTP traffic was searched manually via Wireshark and
interesting traffic was found between 192.168.1.5 and 199.87.160.87. The latter IP
belonged to “Pinger”, a company that offers a messaging service, as can be seen in
Figure 15.

199.87.160.87 address profile
m Diagnostics

IP Whois
NetRange: 199.87.160.0 — 199.87.163.255
CIDR: 199.87.160.0/22
NetName : PNG-NET1
NetHandle: NET-199-87-160-0-1
Parent: NET199 (NET-199-0-0-0-0)
NetType: Direct Allocation
OriginAs:
Organization: Pinger, Inc (PINGE)
RegDate: 2011-01-31
Updated: 2021-12-14
Ref: https://rdap.arin.net/registry/ip/199.87.160.0

Figure 15: A whois lookup against the server IP, revealing it as part of the block owned by Pinger.

The full interaction could be filtered using the following Wireshark query:
((ip.src==192.168.1.5 && ip.dst==199.87.160.87) || (ip.dst==192.168.1.5 &&
ip.src==199.87.160.87)) && http && http contains "messageText"

This filter also only displayed the packets that had “messageText” in them. The data was
sent using JSON files between the client and the server. These JSON files contained a
“messageText” and “sendName” field which were critical in piecing together the
conversation. An example JSON can be seen below.

13

~ JavaScript Object Motation: application/json
~ Object
~ Member: success
[Path with value: /success:messages retrieved]
[Member with value: success:messages retrieved]
String value: messages retrieved
Key: success
[Path: /success]
~ Member: result
~ Object
« Member: recMessages
v Array
« Object
> Member: messageld
> Member: messageType
~ Member: messageText
[Path with value: /result/recMessages/[]/messageText:Good afternoon, Ann.]
[Member with value: messageText:Good afternoon, Ann.]
String value: Good afternoon, Ann.
Key: messageText
[Path: /result/recMessages/[]/messageText]
> Member: recipientType
> Member: recipientId
Member: senderType
> Member: senderId
v Member: senderName
[Path with value: /result/recMessages/[]/senderName:Kim I1l-song]
[Member with value: senderName:Kim Ill-song]
String value: Kim Ill-song
Key: senderiame

Figure 16: An example JSON request sent from the server to the user containing message details.

Analysing the packets, the investigator found the conversation to be between two
parties, Ann Decover and Kim Ill-Song. The conversation mentions a meeting in
September at 5pm but does not specify the date. The entire conversation can be found
in Appendix E.

To find the date, further HTTP traffic was analysed. Traffic was found to the domain
“mob.mapquestapi.com”. MapQuest is a mapping application, like Google Maps. Due to
the high number of requests sent to the address and its unique nature, it was further
investigated. All requests sent to the domain could be viewed using the following
Wireshark filter:

http.host eq mob.mapquestapi.com

This traffic was then exported as text by selecting all the packets, clicking File -> Export
Packet Dissections -> As plain text. This text file was then fed into a python script that
extracted all the unique coordinates found inside the GET request and exported them
into a CSV file. This script can be found in Appendix F. This CSV file was then fed into
Google Maps to lay out the coordinates. Once laid out, the coordinates arranged into the
number 17, presumably the date on which the meeting is to take place. This can be seen
in the below figure.

14

& .. ‘ . .

: SG?u..,srw" =8 OO"O (OOOO' CC((((CICCC‘C'CC(iCOg

Vel (e \\ € AND bn
{4 ‘ b 4 e “hAT RS

A

o
”{)0!

SeYe>35))

} LN “ 5 ~(o)

3

g

«‘\

L £ '\'OO RSy
N) ‘ o ") ' . ™
< ©) 4‘\; yh O,
5 4%0 " # ROSE PARK
Q. “ .

‘.
£ N

(¢)
R

00100 00),09)1000000>0000)

A

~ (o)(o)

- { = —- _,ﬂ")“~ ". '.‘.‘~ = == ;
\ » 1 !

b] w =))
Figure 17: The coordinates found within the traffic laid out on Google Earth,

2

pelling the number 17.

Therefore, it can be presumed that Ann Decover and Kim Ill-Song planned to meet on
the 17t of September at 5pm.

15

Bibliography
Wireshark, 2020. Server Message Block Protocol (SMB). [Online]

Available at: https://wiki.wireshark.org/SMB
[Accessed 25 December 2021].

Appendix A

Statistical Flow Analysis File Preparation
To prepare a file for statistical flow analysis, the capture file was first converted into a

“Yet Another Flowmeter” (YAF) file using the YAF tool. The following command was run
against the capture PCAP file to do this:

yaf --in Capture.pcap --out capture.yaf

This converted the file from its original PCAP type to YAF. The file was then converted
into the appropriate format to be analysed using the System for Internet-Level
Knowledge (SiLK#). This was done by running the following command against the newly
created YAF file:

rwipfixZsilk capture.yaf --silk-output=capture.rw

This command generated a new .rw file that could then be used to conduct statistical
flow analysis.

Appendix B
tracké6.docx

Encoded
VGhIIE15c3Rlcnkgb2YgQ2hlc3MgQm94aW5n0g0KKHVZZXJuYW1lcykNCgOKTXIulE11ld
GhvZAOKDQpLaW0gSWxsLVNvbmcNCgOKTXIulFJhem9yDQoNCk1yLiBHZW5pdXMNCg
OKTXIulEculEtpbGxhaAOKDQpNYXROIENhc3NIbAOKDQpNci4gSS4gRGVjaw0OKDQpNci4
gTSBLaWxsYQOKDQpNci4gTy5ELkIuDQoNCk1yLiBSYWVrd29uDQoNCk1yLiBVLUdvZA
0KDQpNci4gQ2FwcGFkb25uYSAocG9zc2libHkpDQoNCkpvaG4gV29vPwOKDQpNci4gT
mFzDQo=

Decoded

The Mystery of Chess Boxing:
(usernames)

Mr. Method

Kim I1l-Song

Mr. Razor

Mr. Genius

4 https://tools.netsa.cert.org/silk/index.html

16

Mr. G. Killah

Matt Cassel

Mr. I. Deck

Mr. M Killa

Mr. 0.D.B.

Mr. Raekwon

Mr. U-God

Mr. Cappadonna (possibly)
John Woo?

Mr. Nas

Appendix C

Decoded IRC Conversation

[1l Song: Mr. Razor, | am excited about the prospect of the Chess Boxing world title
coming to Pyongyang.

Razor: Well the decision is not final yet.

Razor: [am a very busy man, but perhaps I could be persuaded to visit. See if Pyongyang
is the right place for the World Title.

[1l Song : Perhaps not. How about I send you a gift? Something to get you out of the City
of Love and take your own vacation somewhere.

Razor: Somewhere expensive, | hope.

[l Song: 5

Razor: 9

[l Song: 7

Razor: $700,000 it is. Where can I meet you?

[l Song: I will be in touch with the address.

[l Song: As we discussed earlier, [believe I might be able to help you with your search.

Genius: I see. Then we must meet, and I will see the validity of this claim.

[l Song: I can be in Caracaswithin the week.

Genius: No. Not here. Can I not go to you?

[l Song: I am afraid that would be unwise. [will send you a message with the date and
location through a more secure form of communication.

[1l Song: Mr. Method, [am excited about the prospect of the Chess Boxing world title

coming to Pyongyang.
Method: I am not sure who you are, but I have an idea. Either way, [am not interested.

17

[l Song: I am just hopeful. It would mean so much to have the Title here. Please consider
it.
Method: Do not speak to me again.

[l Song: How is the weather in Qatar, Mr. Killah?

Killah: Hot, as always. Who is this?

[1l Song: I am a fan of Chess Boxing. I would love to see the Title held in Korea.
Killah: We will have to see how the bid turns out.

[l Song: Is there anything that I could do to help make your decision easier?
Killah: No! The great nation of Qatar would never be swayed so easily.

Killah: Nor would I. We do not take kindly to this pathetic notion of bribery.

[1l Song: Mr. Raekwon, have you spoken with Mr. Razor?

Raekwon: I have, but I won.t be bought so easily.

[l Song: Bought? Of course not. You are an official on the executive committee of the
ICBA. I just want you to know that I am here to help make your decision as easy as
possible.

Raekwon: I would need at least 20 million Rubles.

[l Song: Consider it done. I will send you the information for the drop-off point soon.

Appendix D
Capture 3 Image Combination Script

quote = "I cant in good conscience allow the U.S. government to destroy
privacy internet freedom and basic liberties for people around world
with this massive surveillance machine theyre secretly building”

image = open ("final.hex","wb")

for f in quote.split():
f = f +"'jpg"
part = open(f,"rb")
print ("Handling: " ,f)
image.write (part.read())

Appendix E
Full Conversation

Kim Ill-song

Good afternoon, Ann.
Ann Dercover

who is this

Ann Dercover

where are you?

Kim Ill-song

Castling.

Ann Dercover

Do you know that there are people investigating Kim Ill-Song?
Kim Ill-song

[know I can't tell you that.

18

Kim Ill-song

Of course. However, they will never know it is me behind the bribes.
Ann Dercover

still we should be careful. Pay attention. I want to meet in September at 5PM.
Kim Ill-song

At our old meetup spot?

Ann Dercover

yes

Kim Ill-song

What day?

Ann Dercover

[told you to pay attention.

Appendix F

Python Script to extract coordinates
f = open ("/Users/chris/Desktop/loc.txt", "r") #path to exported packets

lines = f.readlines()

coords=[]

for line in lines:

if "location=" in line:

str = line.split("location=",1)[1]
#clean out junk
str = str.replace("HTTP/1.1","")
str = str.replace("s2Cc",",")
str = str.replace("\\r\\n","")
str = str.replace("\\n","")
Str - Str.replace("] ", "")
coords.append (str)

coords = list(set (coords)) #remove duplicates
print (coords)

#write to CSV
output = open ("/Users/chris/Desktop/map.csv","w")
output.write("lat,lon\n")
for x in coords:
output.write (x)

19

	Investigation of Capture1.pcap
	Investigation of Capture2.pcap
	Investigation of Capture3.pcap
	Investigation of Capture4.pcap
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

